Windows10上使用llama-recipes(LoRA)来对llama-2-7b做fine-tune

刚刚在Windows10上搭建环境来对llama2做finetune,里面坑还是挺多的,这里把印象中的坑整理了一下以作备忘。

llama-recipes是meta的开源项目,Github地址为:GitHub - facebookresearch/llama-recipes: Examples and recipes for Llama 2 model

llama2同样也是meta的开源LLM模型,因此用此项目做finetune应该是正确的方向;

模型的选择

模型在自然是在huggingface上下载到的,上面的模型很多,因此您也有很多选择。程序加载模型采用了torch因此需要选择带有pytorch-xxx.bin的目录。本人选择的是daryl149/llama-2-7b-chat-hf(daryl149/llama-2-7b-chat-hf · Hugging Face)

数据集选择

默认数据集是samsum_dataset;使用这个数据集的目标是为一段文字做总结。本人的模型微调目标是问答,所以使用了模型提到的另一个数据集:stanford的alpaca_dataset(文本数据21.7 MB)。

数据集请见:Stanford CRFM

这里我是用项目自带的notebook "quickstart"来一步步执行的,所以我们需要在代码中对数据集进行调整

python 复制代码
train_dataset = get_preprocessed_dataset(tokenizer, alpaca_dataset, 'train')

依赖包下载

依赖包下载比较麻烦,这里是坑最多的地方;国内的网速是一方面,类库对Windows系统的支持是另一方面。

国内镜像加速

很庆幸在互联网上找到了这个清华的源,在pip安装的时候可以加上参数:

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn

torch的下载

我这边经过requirement下载的默认是CPU版本的(😓)

需要卸载并安装GPU版本的,本人目前没有调通CPU版本的程序(从实际角度来说,也是GPU在真实场景下使用概率更高)。如何在安装请参考Start Locally | PyTorch

这里我通过CONDA,装的是CUDA11.8

复制代码
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

一步步处理缺失的包

这里大概就是缺什么包就装什么包

有一点需要额外关注的,就是程序识别不到GPU

这种情况一是安装了CPU版本的pytorch,在前面提到了解决方法;还有一种可能是bitsandbytes的问题;

在Windows10中,我最后同时安装了bitsandbytes 0.39.0版本和bitsandbytes-Windows 0.37.5版本;

同时参考了这篇文章:win11下bitsandbytes的用法 -- yinfupai

我仅仅是将main.py 中的evaluate_cuda_setup() 函数做了修改,如下:

python 复制代码
#return binary_name, cudart_path, cuda, cc, cuda_version_string
return "libbitsandbytes_cuda118.dll", None, None, None, None

我安装的cuda版本是11.8,因此做如上修改;

运行程序

在我的机器上运行一个epoch要50多个小时(😓),想要发挥作用还是需要更好的算力支持啊!

相关推荐
byzh_rc3 分钟前
[机器学习-从入门到入土] 计算学习理论
人工智能·学习·机器学习
水如烟4 分钟前
孤能子视角:人工智能十一条关系线图谱
人工智能
Rabbit_QL8 分钟前
【深度学习数学基础】01_基础统计学
人工智能·深度学习
m0_5711866010 分钟前
第三十周周报
人工智能
绒绒毛毛雨18 分钟前
Advancing Table Understanding of Large Language Models via Feature Re-ordering
人工智能·语言模型·自然语言处理
Toky丶20 分钟前
【文献阅读】Optimum Quanto:量化工作流与数学公式整合笔记
人工智能·深度学习·机器学习
橙露21 分钟前
李一舟人工智能 2.0 视频分享:解锁 AI 时代核心竞争力
人工智能
Brian Xia22 分钟前
从 0 开始手写 AI Agent 框架:nano-agentscope(二)框架搭建
人工智能·python·ai
2503_9469718622 分钟前
【Virtualization/AGI】2026年度全沉浸式虚拟化架构与AGI沙箱逃逸基准索引 (Benchmark Index)
人工智能·网络安全·系统架构·数据集·元宇宙