CFINet-小目标检测

导读

TL;DR : 本文主要针对小目标检测 领域提出了一种名为CFINet的算法框架,通过采用corase-to-fine提议框生成策略特征模仿学习来解决小目标检测的困难。

过去几年中,目标检测取得了巨大的成功,然而当前优秀的检测器在处理小目标仍存在困难。特别地,已知的问题是先验框与目标区域之间的重叠较低,导致了优化的样本池受限,而区分性信息的匮乏进一步加剧了识别问题。

小目标通常缺乏区分性信息和扭曲的结构,导致模型倾向于产生模糊甚至不正确的预测。现有方法通常通过GAN或相似性学习来缩小小物体与大物体之间的表示差距,但这些方法忽略了高质量与大尺寸、小尺寸与低质量之间的区别。本文的核心观点是,在模型优化过程中,判定样本是否是好的示例的标准是动态的,并且应根据检测器的当前优化状态进行调整。

因此,为了缓解上述问题,本文提出了CFINet,这是一个针对小目标检测的两阶段框架,基于由粗到细的流程和特征模仿学习。首先,作者引入了粗到细RPN(CRPN),通过动态锚点选择策略和级联回归来确保小物体的足够高质量的proposal。然后,通过在传统的检测头部引入了一个特征模仿(FI)分支,以一种模仿的方式促进困扰模型的尺寸受限实例的区域表示。此外,文中还提及了一个辅助的模仿损失,遵循监督对比学习范式,以优化这个分支。

最终,通过将CFINetFaster RCNN结合,在大规模小目标检测基准数据集SODADSODA-A上取得了最先进的性能,凸显了其相对于基线检测器和其它主流检测方法的优越性。

相关推荐
如竟没有火炬28 分钟前
全排列——交换的思想
开发语言·数据结构·python·算法·leetcode·深度优先
寂静山林41 分钟前
UVa 12526 Cellphone Typing
算法
kyle~2 小时前
C++---嵌套类型(Nested Types)封装与泛型的基石
开发语言·c++·算法
sali-tec2 小时前
C# 基于halcon的视觉工作流-章48-短路断路
开发语言·图像处理·人工智能·算法·计算机视觉
墨染点香2 小时前
LeetCode 刷题【128. 最长连续序列】
算法·leetcode·职场和发展
被AI抢饭碗的人2 小时前
算法题(240):最大食物链计数
算法
熬了夜的程序员2 小时前
【LeetCode】82. 删除排序链表中的重复元素 II
数据结构·算法·leetcode·链表·职场和发展·矩阵·深度优先
欧克小奥2 小时前
Floyd判圈算法(Floyd Cycle Detection Algorithm)
算法·floyd
熬了夜的程序员3 小时前
【LeetCode】83. 删除排序链表中的重复元素
算法·leetcode·链表
胖咕噜的稞达鸭4 小时前
AVL树手撕,超详细图文详解
c语言·开发语言·数据结构·c++·算法·visual studio