(二十二)大数据实战——Flume数据采集之故障转移案例实战

前言

本节内容我们完成Flume数据采集的故障转移案例,使用三台服务器,一台服务器负责采集nc数据,通过使用failover模式的Sink处理器完成监控数据的故障转移,使用Avro的方式完成flume之间采集数据的传输。整体架构如下:

正文

①在hadoop101服务器的/opt/module/apache-flume-1.9.0/job目录下创建job-nc-flume-avro.conf配置文件,用于监控nc并传输到avro sink

  • job-nc-flume-avro.conf配置文件

    Name the components on this agent

    a1.sources = r1
    a1.channels = c1
    a1.sinkgroups = g1
    a1.sinks = k1 k2

    Describe/configure the source

    a1.sources.r1.type = netcat
    a1.sources.r1.bind = localhost
    a1.sources.r1.port = 44444
    a1.sinkgroups.g1.processor.type = failover
    a1.sinkgroups.g1.processor.priority.k1 = 5
    a1.sinkgroups.g1.processor.priority.k2 = 10
    a1.sinkgroups.g1.processor.maxpenalty = 10000

    Describe the sink

    a1.sinks.k1.type = avro
    a1.sinks.k1.hostname = hadoop102
    a1.sinks.k1.port = 4141
    a1.sinks.k2.type = avro
    a1.sinks.k2.hostname = hadoop103
    a1.sinks.k2.port = 4142

    Describe the channel

    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100

    Bind the source and sink to the channel

    a1.sources.r1.channels = c1
    a1.sinkgroups.g1.sinks = k1 k2
    a1.sinks.k1.channel = c1
    a1.sinks.k2.channel = c1

②在hadoop102服务器的/opt/module/apache-flume-1.9.0/job目录下创建job-avro-flume-console102.conf配置文件,用于监控avro source数据到控制台

  • job-avro-flume-console102.conf配置文件

    Name the components on this agent

    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1

    Describe/configure the source

    a1.sources.r1.type = avro
    a1.sources.r1.bind = hadoop102
    a1.sources.r1.port = 4141

    Describe the sink

    a1.sinks.k1.type = logger

    Describe the channel

    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100

    Bind the source and sink to the channel

    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1

③ 在hadoop103服务器的/opt/module/apache-flume-1.9.0/job目录下创建job-avro-flume-console103.conf配置文件,用于监控avro source数据到控制台

  • job-avro-flume-console103.conf配置文件

    Name the components on this agent

    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1

    Describe/configure the source

    a1.sources.r1.type = avro
    a1.sources.r1.bind = hadoop103
    a1.sources.r1.port = 4142

    Describe the sink

    a1.sinks.k1.type = logger

    Describe the channel

    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100

    Bind the source and sink to the channel

    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1

④启动hadoop102上的flume任务job-avro-flume-console102.conf

  • 命令:

    bin/flume-ng agent -c conf/ -n a1 -f job/job-avro-flume-console102.conf -Dflume.root.logger=INFO,console

⑤启动hadoop103上的flume任务job-avro-flume-console103.conf

  • 命令:

    bin/flume-ng agent -c conf/ -n a1 -f job/job-avro-flume-console103.conf -Dflume.root.logger=INFO,console

⑥启动hadoop101上的flume任务job-nc-flume-avro.conf

  • 命令:

    bin/flume-ng agent -c conf/ -n a1 -f job/job-nc-flume-avro.conf -Dflume.root.logger=INFO,console

⑦使用nc向本地44444监控端口发送数据

  • 由于hadoop103中的sink avro优先级高于hadoop102中的sink avro,故hadoop103接收到了nc发送的数据

  • 此时将hadoop103中的flume任务停止,继续通过nc发送数据,hadoop102的sink avro替换hadoop103中的flume任务继续接收数据打印到控制台

  • 此时在将hadoop103中的flume监控恢复,继续通过nc发送数据,数据继续通过hadoop103中的sink avro接收数据

结语

至此,关于Flume数据采集之故障转移案例实战到这里就结束了,我们下期见。。。。。。

相关推荐
expect7g34 分钟前
Flink KeySelector
大数据·后端·flink
阿里云大数据AI技术16 小时前
StarRocks 助力数禾科技构建实时数仓:从数据孤岛到智能决策
大数据
Lx35221 小时前
Hadoop数据处理优化:减少Shuffle阶段的性能损耗
大数据·hadoop
武子康1 天前
大数据-99 Spark Streaming 数据源全面总结:原理、应用 文件流、Socket、RDD队列流
大数据·后端·spark
阿里云大数据AI技术2 天前
大数据公有云市场第一,阿里云占比47%!
大数据
Lx3522 天前
Hadoop容错机制深度解析:保障作业稳定运行
大数据·hadoop
T06205142 天前
工具变量-5G试点城市DID数据(2014-2025年
大数据
向往鹰的翱翔2 天前
BKY莱德因:5大黑科技逆转时光
大数据·人工智能·科技·生活·健康医疗
鸿乃江边鸟2 天前
向量化和列式存储
大数据·sql·向量化
IT毕设梦工厂2 天前
大数据毕业设计选题推荐-基于大数据的客户购物订单数据分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·数据分析·spark·毕业设计·源码·bigdata