时序数据库IoTDB数据导入与查询功能详解

1. 引言

本文将详细介绍 Apache IoTDB 如何实现数据的导入和查询功能,包括自动导入 CSV 格式数据、使用 SQL 语句写入数据以及基本查询和聚合查询等。

2. 数据导入

2.1 IoTDB 架构简介

以实际工业应用场景为例,我们提供了一个测试用的 CSV 格式数据表格,该表格记录了某集团高山风机的轮毂温度数据。

2.2 CSV 导入时间序列和值

Apache IoTDB 提供了 CSV 工具,可以将 CSV 格式的数据导入数据库中。具体步骤如下:

  1. 启动 IoTDB server。
  2. 进入 tools 目录,执行以下命令(以 Linux 和 Mac 系统为例):
bash 复制代码
import-csv.sh -h <ip> -p <port> -u <username> -pw <password> -f <xxx.csv> [-fd <./failedDirectory>]
  • -f 指定要导入的数据文件。
  • -fd 指定保存失败文件的目录(可选)。

2.3 SQL 写入序列和值

除了导入 CSV 数据,还可以使用 SQL 语句创建和写入时间序列数据。

2.3.1 创建单条时间序列
sql 复制代码
create timeseries root.BHSFC.Q1.W003.speed FLOAT encoding=RLE
2.3.2 写入数据
sql 复制代码
insert into root.BHSFC.Q1.W003(timestamp, speed) values(1657468800000, 1)
2.3.3 创建多条时间序列
sql 复制代码
insert into root.ln1.wf01(time, status, temperature) aligned values(1657468800000, 0, 1)

3. 数据基本查询

3.1 使用 select from 语句查询

3.1.1 查询单个时间序列的数据
sql 复制代码
select WROT_HubTmp from root.BHSFC.Q1.W002
3.1.2 查询多个时间序列的数据
sql 复制代码
select * from root.BHSFC.** limit 10
3.1.3 查询最新数据
sql 复制代码
select last WROT_HubTmp from root.BHSFC.Q1.W002

3.2 使用 where 语句查询

3.2.1 时间过滤查询
sql 复制代码
select WROT_HubTmp from root.BHSFC.Q1.W002 where time < 2022-01-12
3.2.2 查询时间范围内的最新数据
sql 复制代码
select last WROT_HubTmp from root.BHSFC.Q1.W002 where time >= 2022-1-14T00:00:00
3.2.3 值过滤查询
sql 复制代码
select WROT_HubTmp from root.BHSFC.Q1.W002 where WROT_HubTmp > 20

4. 数据聚合查询

4.1 查询时间序列行数

4.1.1 查询单条时间序列行数
sql 复制代码
select count(WROT_HubTmp) from root.BHSFC.Q1.W002
4.1.2 查询多条时间序列行数
sql 复制代码
select count(*) from root.**

4.2 IoTDB 内置聚合函数功能

4.2.1 单层聚合查询
  • 查询最大值:
sql 复制代码
select MAX_VALUE(*) from root.BHSFC.Q1.W002
  • 查询平均值:
sql 复制代码
select AVG(*) from root.BHSFC.Q1.W002
4.2.2 聚合查询+时间过滤
sql 复制代码
select count(*) from root.BHSFC.Q1.W002 where time > 2022-01-13T00:00:00
4.2.3 分层聚合查询
sql 复制代码
select count(*) from root.** group by level = 2
4.2.4 分段聚合查询
  • 按天分段查询平均值:
sql 复制代码
select AVG(*) from root.BHSFC.Q1.W002 group by ([2022-1-14T00:00:00,2022-1-15T00:00:00),1d)
4.2.5 降采样查询
  • 查询每天的最高风速:
sql 复制代码
select max_value (*) from root.BHSFC.Q1.W002 group by ([2022-1-11T00:00:00,2022-1-15T00:00:00),1d)

4.3 控制填充

4.3.1 前值填充
sql 复制代码
select WROT_HubTmp from root.BHSFC.Q1.W002 where time = 2022-01-16T00:00:00 fill(previous)
4.3.2 线性填充
sql 复制代码
select avg(*) from root.BHSFC.Q1.W002 group by ([2022-1-11T00:00:00,2022-1-15T00:00:00),6h,12h) fill (linear)
4.3.3 特定值填充
sql 复制代码
select WROT_HubTmp from root.BHSFC.Q1.W002 where time = 2022-01-16T00:00:00 fill(15)

5. 结语

通过本文,我们详细了解了 Apache IoTDB 的数据导入和查询功能,包括如何导入 CSV 数据、使用 SQL 语句写入和查询数据,以及如何进行聚合查询和控制空值填充。这些功能为时间序列数据的处理提供了强大的支持。

相关推荐
加勒比海涛9 分钟前
Spring Cloud Gateway 实战:从网关搭建到过滤器与跨域解决方案
数据库·redis·缓存
belldeep13 分钟前
java:如何用 JDBC 连接 TDSQL 数据库
java·数据库·jdbc·tdsql
大数据CLUB2 小时前
基于spark的航班价格分析预测及可视化
大数据·hadoop·分布式·数据分析·spark·数据可视化
格调UI成品2 小时前
预警系统安全体系构建:数据加密、权限分级与误报过滤方案
大数据·运维·网络·数据库·安全·预警
reddingtons5 小时前
Adobe Firefly AI驱动设计:实用技巧与创新思维路径
大数据·人工智能·adobe·illustrator·photoshop·premiere·indesign
G皮T6 小时前
【Elasticsearch】全文检索 & 组合检索
大数据·elasticsearch·搜索引擎·全文检索·match·query·组合检索
心平愈三千疾7 小时前
通俗理解JVM细节-面试篇
java·jvm·数据库·面试
算家计算7 小时前
5 秒预览物理世界,2 行代码启动生成——ComfyUI-Cosmos-Predict2 本地部署教程,重塑机器人训练范式!
人工智能·开源
我科绝伦(Huanhuan Zhou)9 天前
Oracle|Oracle SQL*Plus 配置上下翻页功能
数据库·sql·oracle
Cachel wood9 天前
Spark教程6:Spark 底层执行原理详解
大数据·数据库·分布式·计算机网络·spark