1-Pytorch初始化张量和张量的类型

1-Pytorch初始化张量和张量的类型

1 导入必备库

python 复制代码
import torch
import numpy as np

2 初始化张量

python 复制代码
# 初始化张量
t = torch.tensor([1,2])#.type(torch.FloatTensor)
print(t)
print(t.dtype)

输出:

复制代码
tensor([1, 2])
torch.int64

3 创建float型张量

python 复制代码
# 创建float型张量
t = torch.FloatTensor([1,2])
print(t)
print(t.dtype)

t = torch.LongTensor([1,2])#int型
print(t)
print(t.dtype)

输出:

复制代码
tensor([1., 2.])
torch.float32
tensor([1, 2])
torch.int64

4 从Numpy数组ndarray创建张量

python 复制代码
# 从Numpy数组ndarray创建张量
np_array = np.array([[1,2],[3,4]])
t_np = torch.from_numpy(np_array)#.type(torch.int32)
print(t_np)

'''张量的ndarray类型主要包含:
    32位浮点型:torch.float32/torh.float(常用),相当于torch.FloatTensor
    64位浮点型:torch.float64
    16位浮点型:torch.float16
    64位整型:torch.in64/torch.long(常用),相当于torch.LongTensor
    32位整型:torch.int32
    16位整型:torch.int16
    8位整型:torch.int8
'''
print(torch.float == torch.float32)
print(torch.long == torch.int64)

输出:

复制代码
tensor([[1, 2],
        [3, 4]], dtype=torch.int32)
True
True

5 构建张量时用dtype明确其类型,或者用type

python 复制代码
# 构建张量时用dtype明确其类型,或者用type
t = torch.tensor([[1, 2],
        [3, 4]], dtype=torch.int32)
print(t)
print(t.dtype)

t = torch.tensor([[1, 2],
        [3, 4]]).type(torch.int32)
print(t)
print(t.dtype)

输出:

复制代码
tensor([[1, 2],
        [3, 4]], dtype=torch.int32)
torch.int32
tensor([[1, 2],
        [3, 4]], dtype=torch.int32)
torch.int32

6 等价转换int64和float32

python 复制代码
t = torch.tensor([[1, 2],
        [3, 4]]).type(torch.int32)
print(t)
print(t.dtype)

t = t.long()    #等同int64
print(t)
print(t.dtype)

t = t.float()   #等同float32
print(t)
print(t.dtype)

输出:

复制代码
tensor([[1, 2],
        [3, 4]], dtype=torch.int32)
torch.int32
tensor([[1, 2],
        [3, 4]])
torch.int64
tensor([[1., 2.],
        [3., 4.]])
torch.float32
相关推荐
哲此一生9849 分钟前
YOLO11追踪简单应用
人工智能·pytorch·深度学习
kalvin_y_liu15 分钟前
华为ACT三步走”实施路径,以推动行业智能化落地
大数据·人工智能·ai应用
双翌视觉30 分钟前
机器视觉的手机模组背光贴合应用
人工智能·机器学习·智能手机·1024程序员节
珊珊而川41 分钟前
多agent框架被用于分布式环境中的任务执行 是什么意思
人工智能
知来者逆41 分钟前
计算机视觉——从环境配置到跨线计数的完整实现基于 YOLOv12 与质心追踪器的实时人员监控系统
人工智能·yolo·目标检测·计算机视觉·1024程序员节·目标追踪·yolov12
九章云极AladdinEdu44 分钟前
AI芯片微架构对比:从NVIDIA Tensor Core到Google TPU的矩阵计算单元
人工智能·tensor core·tpu·混合精度·矩阵计算单元·wmma编程·脉动阵列
Geoking.1 小时前
PyTorch torch.ones()张量创建详解
人工智能·pytorch·python
conkl1 小时前
在 CentOS 系统上实现定时执行 Python 邮件发送任务完整指南
linux·运维·开发语言·python·centos·mail·邮箱
AKAMAI1 小时前
Akamai推出Akamai Inference Cloud (AI推理云),重新定义人工智能的应用场景与实现方式
人工智能·云原生·云计算
人工智能教学实践1 小时前
TCP 与 HTTP 协议深度解析:从基础原理到实践应用
python