机器学习的特征工程

字典特征提取

python 复制代码
def dict_demo():
    """
    字典特征提取
    :return:
    """
    data = [{'city': '北京', 'temperature': 100}, {'city': '上海', 'temperature': 60}, {'city': '深圳', 'temperature': 30}]
    # data = [{'city':['北京','上海','深圳']},{'temperature':["100","60","30"]}]
    from sklearn.feature_extraction import DictVectorizer
    # 1、实例化一个转换器类
    transfer = DictVectorizer(sparse=False) # sparse=False表示不用稀疏矩阵存储,稀疏矩阵存储的好处是节省内存,但是不方便观察,所以一般不用
    # 2、调用fit_transform
    data_new = transfer.fit_transform(data)
    print(f'转换后的数据:{data_new}')
    print(f'特征名字:{transfer.get_feature_names_out()}') # ['city=上海' 'city=北京' 'city=深圳' 'temperature']

    return None

结果显示

注意:如果特征中存在非数值类型数据,需要转换成字典然后使用one-hot编码

文本特征提取

python 复制代码
def text_demo():
    """
    文本特征提取
    :return:
    """
    data = ["life is short,i like python","life is too long,i dislike python"]
    from sklearn.feature_extraction.text import CountVectorizer
    # 1、实例化一个转换器类
    transfer = CountVectorizer()
    # 2、调用fit_transform
    data_new = transfer.fit_transform(data)
    print(f'转换后的数据:{data_new.toarray()}') # toarray()将稀疏矩阵转换成数组
    print(f'特征名字:{transfer.get_feature_names_out()}')

    return None

结果显示

中文文本特征抽取

python 复制代码
def chinese_demo():
    """
    中文文本特征抽取
    :return:
    """
    data = ["我 爱 北京 天安门","天安门 上 太阳 升"]
    from sklearn.feature_extraction.text import CountVectorizer
    # 1、实例化一个转换器类
    transfer = CountVectorizer(stop_words=[]) # stop_words表示停用词,不需要的词
    # 2、调用fit_transform
    data_new = transfer.fit_transform(data)
    print(f'转换后的数据:{data_new.toarray()}') # toarray()将稀疏矩阵转换成数组
    print(f'特征名字:{transfer.get_feature_names_out()}')

    return None

结果

中文文本抽取,自动分词

python 复制代码
# 分词函数
import jieba
def cut_word(text):
    text = " ".join(list(jieba.cut(text)))
    return text

def chinese_demo2():
    """
    中文文本特征抽取,自动分词
    :return:
    """
    data = ["今天很残酷,明天更残酷,后天很美好,但绝对大多数是死在明天晚上,所以每个人不要放弃今天。",
            "我们看到的从很远星系来的光是在几百万年之前发出的,这样当我们看到宇宙时,我们是在看它的过去。",
            "如果只用了一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相关联。"]

    # 1、分词
    data_new = []
    for sent in data:
        data_new.append(cut_word(sent))
    # print(data_new)
    # 2、特征抽取
    from sklearn.feature_extraction.text import CountVectorizer
    # 1、实例化一个转换器类
    transfer = CountVectorizer(stop_words=[]) # stop_words表示停用词,不需要的词
    # 2、调用fit_transform
    data_final = transfer.fit_transform(data_new)
    print(f'转换后的数据:{data_final.toarray()}') # toarray()将稀疏矩阵转换成数组
    print(f'特征名字:{transfer.get_feature_names_out()}')

结果

TF-IDF特征抽取

python 复制代码
def tf_idf_demo():
    """
    tf-idf特征抽取
    :return:
    """
    data = ["今天很残酷,明天更残酷,后天很美好,但绝对大多数是死在明天晚上,所以每个人不要放弃今天。",
            "我们看到的从很远星系来的光是在几百万年之前发出的,这样当我们看到宇宙时,我们是在看它的过去。",
            "如果只用了一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相关联。"]
    # 1、分词
    data_new = []
    for sent in data:
        data_new.append(cut_word(sent))
    # print(data_new)
    # 2、特征抽取
    from sklearn.feature_extraction.text import TfidfVectorizer
    # 1、实例化一个转换器类
    transfer = TfidfVectorizer(stop_words=[]) # stop_words表示停用词,不需要的词
    # 2、调用fit_transform
    data_final = transfer.fit_transform(data_new)
    print(f'转换后的数据:{data_final.toarray()}') # toarray()将稀疏矩阵转换成数组
    print(f'特征名字:{transfer.get_feature_names_out()}')

结果

归一化

data.txt

python 复制代码
def guiyi_demo():
    """
    归一化
    :return:
    """
    import pandas as pd
    # 读取数据
    data = pd.read_csv("./data.txt")
    # print(data)
    data = data.iloc[:,:3]
    # print(data)
    # 归一化(针对特征值)
    from sklearn.preprocessing import MinMaxScaler
    # 1、实例化一个转换器类
    transfer = MinMaxScaler(feature_range=(0,1)) # feature_range表示归一化的范围
    # 2、调用fit_transform
    data_new = transfer.fit_transform(data)
    print(f'转换后的数据:{data_new}')

结果

标准化

python 复制代码
def biaozhun_demo():
    """
    标准化
    :return:
    """
    import pandas as pd
    data = pd.read_csv("./data.txt")
    data = data.iloc[:,:3]
    # 标准化
    from sklearn.preprocessing import StandardScaler
    # 1、实例化一个转换器类
    transfer = StandardScaler()
    # 2、调用fit_transform
    data_new = transfer.fit_transform(data)
    print(f'转换后的数据:{data_new}')

结果

低方差特征过滤

python 复制代码
def varis_demo():
    """
    过滤低方差特征
    :return:
    """
    import pandas as pd
    data = pd.read_csv("./data.txt")
    data = data.iloc[:,1:-2]
    # 过滤低方差特征
    from sklearn.feature_selection import VarianceThreshold
    # 1、实例化一个转换器类
    transfer = VarianceThreshold(threshold=0.0) # threshold表示方差的阈值
    # 2、调用fit_transform
    data_new = transfer.fit_transform(data)
    print(f'转换后的数据:{data_new}')

结果

相关系数法

python 复制代码
def xiangguan_demo():
    """
    相关系数法
    :return:
    """
    import pandas as pd
    data = pd.read_csv("./data.txt")
    data = data.iloc[:,1:-2]
    # 相关系数法,皮尔逊相关系数
    from scipy.stats import pearsonr
    # 1、实例化一个转换器类
    r = pearsonr(data['pe_ratio'],data['pb_ratio'])
    # 2、求出相关系数
    print(f'皮尔逊相关系数:{r}')
    # 处理方法
    # 1、选取其中一个特征
    # 2、加权求和
    # 3、主成分分析

主成分分析

python 复制代码
def pca_demo():
    """
    主成分分析
    :return:
    """
    data = [[2,8,4,5],[6,3,0,8],[5,4,9,1]]
    # 主成分分析
    from sklearn.decomposition import PCA
    # 1、实例化一个转换器类
    # transfer = PCA(n_components=0.9) # n_components表示保留多少特征信息
    transfer = PCA(n_components=2) # n_components表示保留的特征个数
    # 2、调用fit_transform
    data_new = transfer.fit_transform(data)
    print(f'转换后的数据:{data_new}')
    print(f'保留的特征个数:{transfer.n_components_}')
    print(f'保留的特征百分比:{transfer.explained_variance_ratio_}')
    return None

结果

综合案例分析

python 复制代码
def instacart_demo():
    """
    instacart案例分析
    :return:
    """
    # 1、读取数据
    import pandas as pd
    order_products = pd.read_csv('./instacart/order_products__prior.csv')
    orders = pd.read_csv('./instacart/orders.csv')
    products = pd.read_csv('./instacart/products.csv')
    aisles = pd.read_csv('./instacart/aisles.csv')
    # 2、合并aisles和products表,目的:aisles_id和products在一张表中
    table1 = pd.merge(aisles,products,on=['aisles_id','aisles_id'])
    table2 = pd.merge(table1,order_products,on=['product_id','product_id'])
    table3 = pd.merge(table2,orders,on=['order_id','order_id'])
    # 3、交叉表处理
    table = pd.crosstab(table3['user_id'],table3['aisle'])
    # 4、主成分分析
    from sklearn.decomposition import PCA
    # 1、实例化一个转换器类
    transfer = PCA(n_components=0.95) # n_components表示保留多少特征信息
    # 2、调用fit_transform
    data_new = transfer.fit_transform(table)
    print(f'转换后的数据:{data_new}')
    print(f'保留的特征个数:{transfer.n_components_}')
    print(f'保留的特征百分比:{transfer.explained_variance_ratio_}')
    return None
相关推荐
像污秽一样23 分钟前
动手学深度学习-深度学习计算-1层和块
人工智能·深度学习
迪小莫学AI27 分钟前
精准识别花生豆:基于EfficientNetB0的深度学习检测与分类项目
人工智能·深度学习·分类
编程迪40 分钟前
自研PHP版本AI口播数字人系统源码适配支持公众号H5小程序
人工智能·数字人系统源码·口播数字人·数字人小程序·数字人开源
Anna_Tong44 分钟前
人工智能的视觉天赋:一文读懂卷积神经网络
人工智能·神经网络·cnn
ZHOU_WUYI1 小时前
adb 安装教程
人工智能·adb
weixin_443042651 小时前
信息系统管理师试题-转型升级
人工智能·信息系统项目管理师
CV-King2 小时前
旋转框目标检测自定义数据集训练测试流程
人工智能·目标检测·计算机视觉
无问社区2 小时前
无问社区-无问AI模型
人工智能·web安全·网络安全
Jacen.L3 小时前
探究音频丢字位置和丢字时间对pesq分数的影响
人工智能·语音识别
DashVector3 小时前
如何通过HTTP API插入或更新Doc
大数据·数据库·数据仓库·人工智能·http·数据库架构·向量检索