目标检测常见问题

一.如何检测小目标

参考:https://mp.weixin.qq.com/s/_gIimlwgjXgarKLPHpp4zQ

1.数据层面:

①将原始图像进行缩放,提高小目标样本数

②增加模型的输入尺寸

③采用mosaic数据增强,四张照片缩放,拼接为一张

2.网络结构方面:(适用于小目标分割)

多尺度融合Feature Pyramid Networks, FPN(上采样,自顶向下,深层网络为顶,顶为上)Path Aggregation Network, PAN (下采样,自底向上)等

②**注意力机制:**如SENet

③**长跳跃连接:**长跳跃连接是指将不同层级的特征图进行融合的一种方法,可以帮助模型更好地捕捉不同层级的特征信息。众所周知,浅层特征图的细节信息丰富但语义信息较弱,深层特征图则与之相反。因此,在小目标检测中,可以将低层级的特征图和高层级的特征图进行融合,以增强对小目标的定位能力。

二.两阶段目标检测:

相关推荐
weixin_46202235几秒前
RAW-Adapter: Adapting Pre-trained Visual Model to Camera RAW Images
python·计算机视觉
Ulana17 分钟前
计算机基础10大高频考题解析
java·人工智能·算法
windfantasy199018 分钟前
NCT与GESP哪个更好?线上监考与线下考点的便利性对比
人工智能
执笔论英雄19 分钟前
【LORA】
人工智能
Jerryhut32 分钟前
Bev感知特征空间算法
人工智能
xian_wwq43 分钟前
【学习笔记】基于人工智能的火电机组全局性能一体化优化研究
人工智能·笔记·学习·火电
春风LiuK1 小时前
虚实无界:VRAR如何重塑课堂与突破研究边界
人工智能·程序人生
歌_顿1 小时前
Embedding 模型word2vec/glove/fasttext/elmo/doc2vec/infersent学习总结
人工智能·算法
胡萝卜3.01 小时前
深入C++可调用对象:从function包装到bind参数适配的技术实现
开发语言·c++·人工智能·机器学习·bind·function·包装器
Echo_NGC22371 小时前
【KL 散度】深入理解 Kullback-Leibler Divergence:AI 如何衡量“像不像”的问题
人工智能·算法·机器学习·散度·kl