Python 和 MatLab 模拟粒子动力系统

力计算

我们将假设一个由 N N N 个点粒子组成的系统,索引为 i = 1 , ... , N i=1, \ldots, N i=1,...,N。每个粒子都有一个:

  • 质量 m i m_i mi

  • 位置 r i = [ x i , y i , z i ] r_{\boldsymbol{i}}=\left[x_i, y_i, z_i\right] ri=[xi,yi,zi]

  • 速度 v i = [ v x i , v y i , v z i ] \mathbf{v}_{\boldsymbol{i}}=\left[\mathrm{vx}_i, \mathrm{v} y_i, \mathrm{v} z_i\right] vi=[vxi,vyi,vzi]

根据牛顿万有引力定律(著名的"平方反比定律"),每个粒子都会感受到所有其他粒子的引力。也就是说,每个粒子都会感受到加速度:
a i = G ∑ j ≠ i m j r j − r i ∣ r j − r i ∣ 3 \mathbf{a}i=G \sum{j \neq i} m_j \frac{\mathbf{r}_j-\mathbf{r}_i}{\left|\mathbf{r}_j-\mathbf{r}_i\right|^3} ai=Gj=i∑mj∣rj−ri∣3rj−ri

Python计算矩阵

时间积分

位置和速度使用蛙跳方案进行更新。对于每个时间步 Δt,每个粒子都会受到半步"跳":
v i = v i + Δ t 2 × a i \mathbf{v}_i=\mathbf{v}_i+\frac{\Delta t}{2} \times \mathbf{a}_i vi=vi+2Δt×ai

Python加速度函数

上述代码的性能在Python中实际上可以通过向量化来提高。 也就是说,用向量和矩阵运算来表述问题。 它通常可以带来 100 倍的加速,还使代码更具可读性。 缺点是在矩阵内存储中间计算会占用大量内存。 这是计算所有粒子加速度的函数的矢量化版本:

Python矢量加速度计算

Python动能和势能

我们的代码计算这些量并跟踪总能量,以确保通过数值方法近似守恒。

MatLab再实现

参阅 - 亚图跨际
相关推荐
freexyn5 分钟前
Matlab自学笔记六十一:快速上手解方程
数据结构·笔记·matlab
try2find18 分钟前
安装llama-cpp-python踩坑记
开发语言·python·llama
博观而约取1 小时前
Django ORM 1. 创建模型(Model)
数据库·python·django
ytttr8732 小时前
matlab通过Q学习算法解决房间路径规划问题
学习·算法·matlab
精灵vector3 小时前
构建专家级SQL Agent交互
python·aigc·ai编程
Zonda要好好学习3 小时前
Python入门Day2
开发语言·python
Vertira3 小时前
pdf 合并 python实现(已解决)
前端·python·pdf
太凉3 小时前
Python之 sorted() 函数的基本语法
python
项目題供诗3 小时前
黑马python(二十四)
开发语言·python
晓13134 小时前
OpenCV篇——项目(二)OCR文档扫描
人工智能·python·opencv·pycharm·ocr