MVDiffusion | 领取你的建筑家具图纸设计师

MVDiffusion: Enabling Holistic Multi-view Image Generation with Correspondence-Aware Diffusion



Abstract

  • 全景图生成:输入文本提示或者文本图像条件,生成8个视角关联的图像,即可拼接成一张全景图 panaroma
  • 多视角深度图生成纹理网格:通过深度图生成 3D geometry mesh with texture

Contributions

  • 根据文本描述,MVDiffusion 可生成具有高分辨率和丰富内容的整体一致的多视角图像,这对全景生成和多视角深度图像生成等实际任务大有裨益。
  • Image generation

  • 3D content generation

Methodology

Overview

Text-conditioned generation model

  • 8个视角需要8个文本提示
  • 每张图像的latents初始化为独立的高斯噪声
  • 在去噪步,每个隐层噪声喂给多分支的UNet
  • 最后通过SD的VAE Decoder解码成多视角图像

Correspondence-aware Attention

  • 目的是加强多视角特征图的连续性 consistency
  • 借鉴ControlNet,用零卷积初始化为0
  • Source和Target的匹配点问题

    • 定义了KXK的领域限制,一般K=3或者K=1效率比较高
    • 位置坐标不是整数,而是通过双线性插值得到的浮点数
    • l是第l个视角 l属于[0,N]
    • 计算采用CA标准计算 WQ, WK, and WV are the learnable weights of query, key and value matrices
    • 最关键是:将S和S*的位置差分增加到position encoding γ(),因为位移提供了局部邻域的相对位置

Image&text-conditioned generation model

  • Image&text-conditioned generation model
    • 1个条件图,生成7个目标图像即可
    • SD的inpainting model作为base model,再加上CAA
  • Multi-view depth-to-image generation
    • 从深度图中提取关键帧key-frame
    • 通过给定相机pose和帧外插生成图像

Experiments

  • 全景图
  • 深度图

Demos

  • 布局明确
  • 卡通风格 cartoon
  • 油画风格 oil painting

Conclusions

  • 引入了CAA匹配点感知注意力机制 将多视角图像生成的连续性进行了强关联(匹配点)
  • 在建筑、室内设计行业,可以通过文本和图像条件直接生成全景图和3D室内模型,大大简化图纸设计工作,而且在家具布局layout和风格style上具有较好的生成表现

References

相关推荐
gfdhy1 小时前
【c++】哈希算法深度解析:实现、核心作用与工业级应用
c语言·开发语言·c++·算法·密码学·哈希算法·哈希
百***06011 小时前
SpringMVC 请求参数接收
前端·javascript·算法
一个不知名程序员www2 小时前
算法学习入门---vector(C++)
c++·算法
云飞云共享云桌面2 小时前
无需配置传统电脑——智能装备工厂10个SolidWorks共享一台工作站
运维·服务器·前端·网络·算法·电脑
福尔摩斯张3 小时前
《C 语言指针从入门到精通:全面笔记 + 实战习题深度解析》(超详细)
linux·运维·服务器·c语言·开发语言·c++·算法
橘颂TA3 小时前
【剑斩OFFER】算法的暴力美学——两整数之和
算法·leetcode·职场和发展
xxxxxxllllllshi3 小时前
【LeetCode Hot100----14-贪心算法(01-05),包含多种方法,详细思路与代码,让你一篇文章看懂所有!】
java·数据结构·算法·leetcode·贪心算法
前端小L4 小时前
图论专题(二十二):并查集的“逻辑审判”——判断「等式方程的可满足性」
算法·矩阵·深度优先·图论·宽度优先
铁手飞鹰4 小时前
二叉树(C语言,手撕)
c语言·数据结构·算法·二叉树·深度优先·广度优先
专业抄代码选手5 小时前
【Leetcode】1930. 长度为 3 的不同回文子序列
javascript·算法·面试