DAY 37 早停策略和模型权重的保存

  1. 早停策略

python 复制代码
import torch.nn as nn
import torch.optim as optim
import time
import matplotlib.pyplot as plt
from tqdm import tqdm

# Define the MLP model
class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.fc1 = nn.Linear(X_train.shape[1], 10)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(10, 2)  # Binary classification

    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        return out

# Instantiate the model
model = MLP().to(device)

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)

# Training settings
num_epochs = 20000
early_stop_patience = 50  # Epochs to wait for improvement
best_loss = float('inf')
patience_counter = 0
best_epoch = 0
early_stopped = False

# Track losses
train_losses = []
test_losses = []
epochs = []

# Start training
start_time = time.time()
with tqdm(total=num_epochs, desc="Training Progress", unit="epoch") as pbar:
    for epoch in range(num_epochs):
        model.train()
        optimizer.zero_grad()
        outputs = model(X_train)
        train_loss = criterion(outputs, y_train)
        train_loss.backward()
        optimizer.step()
        
        # Evaluate on the test set
        model.eval()
        with torch.no_grad():
            outputs_test = model(X_test)
            test_loss = criterion(outputs_test, y_test)
        
        if (epoch + 1) % 200 == 0:
            train_losses.append(train_loss.item())
            test_losses.append(test_loss.item())
            epochs.append(epoch + 1)
            
            # Early stopping check
            if test_loss.item() < best_loss:  # If current test loss is better than the best
                best_loss = test_loss.item()  # Update best loss
                best_epoch = epoch + 1  # Update best epoch
                patience_counter = 0  # Reset counter
                # Save the best model
                torch.save(model.state_dict(), 'best_model.pth')
            else:
                patience_counter += 1
                if patience_counter >= early_stop_patience:
                    print(f"Early stopping triggered! No improvement for {early_stop_patience} epochs.")
                    print(f"Best test loss was at epoch {best_epoch} with a loss of {best_loss:.4f}")
                    early_stopped = True
                    break  # Stop the training loop
            
            # Update the progress bar
            pbar.set_postfix({'Train Loss': f'{train_loss.item():.4f}', 'Test Loss': f'{test_loss.item():.4f}'})
        
        # Update progress bar every 1000 epochs
        if (epoch + 1) % 1000 == 0:
            pbar.update(1000)

# Ensure progress bar reaches 100%
if pbar.n < num_epochs:
    pbar.update(num_epochs - pbar.n)

time_all = time.time() - start_time  # Calculate total training time
print(f'Training time: {time_all:.2f} seconds')

# If early stopping occurred, load the best model
if early_stopped:
    print(f"Loading best model from epoch {best_epoch} for final evaluation...")
    model.load_state_dict(torch.load('best_model.pth'))

# Continue training for 50 more epochs after loading the best model
num_extra_epochs = 50
for epoch in range(num_extra_epochs):
    model.train()
    optimizer.zero_grad()
    outputs = model(X_train)
    train_loss = criterion(outputs, y_train)
    train_loss.backward()
    optimizer.step()
    
    # Evaluate on the test set
    model.eval()
    with torch.no_grad():
        outputs_test = model(X_test)
        test_loss = criterion(outputs_test, y_test)
    
    train_losses.append(train_loss.item())
    test_losses.append(test_loss.item())
    epochs.append(num_epochs + epoch + 1)

    # Print progress for the extra epochs
    print(f"Epoch {num_epochs + epoch + 1}: Train Loss = {train_loss.item():.4f}, Test Loss = {test_loss.item():.4f}")

# Plot the loss curves
plt.figure(figsize=(10, 6))
plt.plot(epochs, train_losses, label='Train Loss')
plt.plot(epochs, test_losses, label='Test Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training and Test Loss over Epochs')
plt.legend()
plt.grid(True)
plt.show()

# Evaluate final accuracy on the test set
model.eval()
with torch.no_grad():
    outputs = model(X_test)
    _, predicted = torch.max(outputs, 1)
    correct = (predicted == y_test).sum().item()
    accuracy = correct / y_test.size(0)
    print(f'Test Accuracy: {accuracy * 100:.2f}%')

@浙大疏锦行

相关推荐
MSTcheng.几秒前
构建自定义算子库:基于ops-nn和aclnn两阶段模式的创新指南
人工智能·cann
Charlie_lll1 分钟前
力扣解题-移动零
后端·算法·leetcode
chaser&upper1 分钟前
矩阵革命:在 AtomGit 解码 CANN ops-nn 如何构建 AIGC 的“线性基石”
程序人生·算法
User_芊芊君子4 分钟前
CANN图编译器GE全面解析:构建高效异构计算图的核心引擎
人工智能·深度学习·神经网络
lili-felicity4 分钟前
CANN加速Whisper语音识别推理:流式处理与实时转录优化
人工智能·whisper·语音识别
沈浩(种子思维作者)5 分钟前
系统要活起来就必须开放包容去中心化
人工智能·python·flask·量子计算
行走的小派7 分钟前
引爆AI智能体时代!OPi 6Plus全面适配OpenClaw
人工智能
云边有个稻草人7 分钟前
CANN:解构AIGC底层算力,ops-nn驱动神经网络算子加速
人工智能·神经网络·aigc·cann
爱吃大芒果7 分钟前
CANN神经网络算子库设计思路:ops-nn项目的工程化实现逻辑
人工智能·深度学习·神经网络
weixin_4997715510 分钟前
C++中的组合模式
开发语言·c++·算法