SegGPT: Segmenting Everything In Context论文笔记

论文 https://arxiv.org/pdf/2304.03284.pdf
Code https://github.com/baaivision/Painter

文章目录

  • [1. 背景](#1. 背景)
  • [2. Motivation](#2. Motivation)
  • [3. Method](#3. Method)
    • [3.1 In-Context Coloring](#3.1 In-Context Coloring)
    • [3.2 Context Ensemble](#3.2 Context Ensemble)
    • [3.3 In-Context Tuning](#3.3 In-Context Tuning)

1. 背景

在Painter中,将各种密集预测任务视为一种着色问题。

  • 在训练过程中将同一数据集的两张图片的原图和GT图分别拼接起来,然后,随机将GT图的某些块mask掉,通过预测这些被mask掉的区域的颜色,并和GT进行loss监督。
  • 那么,在推理阶段,给定一张图片和它对应的GT图作为prompt,再给定一张要与prompt执行相同任务的图片,那么这张图片的GT相当于被全部mask掉,模型输出就会将mask掉的区域也就是整张图的颜色预测出来。

2. Motivation

  • 在Painter中,以语义分割任务为例,类别的颜色是事先给定的,使得模型学习到的是一种任务特定的颜色预测任务;
  • 在SegGPT中,目标是根据上下文完成不同的任务,而不是依赖于特定的颜色。

3. Method

3.1 In-Context Coloring

在Painter中,每个类别的颜色是事先定义的,这导致模型学习到了任务特定的信息,而不是依据给定的prompt,按照其中的上下文含义进行分割。

因此:

  1. SegGPT将之前的预定义的颜色着色改成了随机着色
  2. 此外,为了应对上下文的问题,对于当前训练图片,从数据集中随机挑选出与当前图片上下文相同的图片,如类别一致或者属于同一instance,以这样的方式来构造pairs;
  3. 注意,同一pairs要使用相同的颜色映射,这样模型才能知道着色相同的区域上下文是一致的;

3.2 Context Ensemble

在推理阶段,可以给定一张图片和对应的标签作为prompt,将要推理的图片和prompt进行拼接。

为了使得结果更加准确,可以使用多个prompt,这些prompt就需要进行集成ensemble,本文提出了两种集成方式:

  • the spatial ensemble (top) and the feature ensemble (bottom). The spatial ensemble strategy involves stitching multiple example images together and resizing them to the input resolution.
  • The feature ensemble strategy averages features of the query image after each attention layer so that the query image aggregates all the reference examples.

3.3 In-Context Tuning

简而言之,就是对于特定任务,你如果认为随便找一张图片和对应的标签不具有代表性,可以将模型参数固定,初始化一个可学习的prompt图片,然后用同样的loss去更新prompt,这样,在推理阶段,可以直接使用这个迭代更新得到的prompt作为提示。

这个过程类似数据集蒸馏的过程,也就是说合成一张能够代表整个数据集的图片。

相关推荐
北京地铁1号线9 小时前
GPT-2论文阅读:Language Models are Unsupervised Multitask Learners
论文阅读·gpt·语言模型
有Li1 天前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
张较瘦_1 天前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习
selia10781 天前
[论文阅读] Neural Architecture Search: Insights from 1000 Papers
论文阅读
寻丶幽风1 天前
论文阅读笔记——NoPoSplat
论文阅读·笔记·三维重建·3dgs·相机位姿·dustr
寻丶幽风2 天前
论文阅读笔记——VGGT: Visual Geometry Grounded Transformer
论文阅读·笔记·transformer·三维重建·3dgs·vggt
张较瘦_2 天前
[论文阅读] 人工智能 + 软件工程 | Call Me Maybe:用图神经网络增强JavaScript调用图构建
论文阅读·人工智能·软件工程
非英杰不图2 天前
论文阅读:Align and Prompt (ALPRO 2021.12)
论文阅读·prompt
qq_416276422 天前
当SAM遇到声纳图像时之论文阅读
论文阅读
王上上2 天前
【论文阅读38】-结合应力预测位移
论文阅读