传统机器学习总结以及深度学习初识

传统机器学习总结以及深度学习初识

文章目录


前言

在这个暑假,我学习了一些传统的机器学习算法,并对我的学习进行了总结,另外我也开始接触深度学习。本篇文章将再度对一些传统机器学习算法进行总结并且初步介绍一下深度学习。这也算是一个过渡篇章吧。


以下是常见的机器学习算法的分类:

一、监督学习算法(Supervised Learning):

线性回归(Linear Regression)

逻辑回归(Logistic Regression)

决策树(Decision Trees)

随机森林(Random Forests)

支持向量机(Support Vector Machines)

K最近邻(K-Nearest Neighbors)

朴素贝叶斯(Naive Bayes)

二、无监督学习算法(Unsupervised Learning):

聚类算法(Clustering Algorithms),如K均值(K-Means)、层次聚类(Hierarchical Clustering)等

关联规则学习(Association Rule Learning)

主成分分析(Principal Component Analysis)

高斯混合模型(Gaussian Mixture Models)

自组织映射(Self-Organizing Maps)

三、半监督学习算法(Semi-Supervised Learning):

结合了有标签数据和无标签数据进行学习,常用于数据集标签不完整的情况。

四、深度学习算法

如卷积神经网络(Convolutional Neural Networks)和循环神经网络(Recurrent Neural Networks)等。

五、其它

强化学习算法(Reinforcement Learning):通过试错和奖惩机制来训练智能体(Agent),以最大化某个目标函数。常见算法包括Q-learning和深度强化学习(Deep Reinforcement Learning)。

此外,还有集成学习算法(Ensemble Learning)如Adaboost、Bagging和随机森林;

一、传统机器学习总结

1.1. 监督学习算法(Supervised Learning)

监督学习使用标记数据(具有已知答案的数据)来训练算法

监督学习可以根据已知的垃圾邮件示例分类 诸如"什么是电子邮件中的垃圾邮件"之类的数据。

监督学习可以预测结果,例如根据您播放的视频预测您喜欢哪种视频

线性回归算法 百日筑基篇------线性回归算法(python机器学习算法)
决策树与随机森林 机器学习------决策树与随机森林
KNN 机器学习------K最近邻算法(KNN)
逻辑回归 机器学习------逻辑回归(LR)
支持向量机 机器学习------支持向量机(SVM)

机器学习------自然语言处理(NLP)一 (额外)

1.2. 无监督学习算法(Unsupervised Learning)

无监督学习用于预测未定义的关系,即没有标签的数据

聚类算法 机器学习------聚类算法一
主成分分析PCA 机器学习------主成分分析PCA
关联规则分析 机器学习------关联规则挖掘一
协同过滤 机器学习------协同过滤算法(CF)
LOF和孤立森林算法 机器学习------LOF和孤立森林算法

二、深度学习初识

人工智能与机器学习、深度学习的关系:

机器学习(ML)的大概步骤:

  1. 获取数据与预处理
  2. 特征工程(重点)
  3. 建立模型
  4. 对模型评估和应用

特征工程这一步是极为关键的,它决定了模型的上限,而算法和参数调优只是决定了如何逼近这个上限。

传统的机器学习主要依靠人工来提取特征,而深度学习更偏向智能化,依靠多种神经网络算法让计算机自动提取特征。

如图所示(随着数据规模的增大,深度学习算法的效果显然更好)

深度学习的应用领域:

  1. 语音识别
  2. 图像识别
  3. 机器的下一步分析(如阿尔法狗)
  4. 文本语言处理

三、github与gitee的介绍

github是英文并且用户基数多,知名的库也多,而gitee是中文,而且大部分用户都是国人,优秀的库相对GitHub较少。 都是基于gitc仓库的代码托管平台,GitHub是全球最大的代码托管平台之一,而Gitee是中国的代码托管平台,主要面向国内用户。

并且有时候访问GitHub是不稳定的,而gitee很稳定。

3.1. GitHub:

3.2. Gitee:

其中有一些开源项目和学习资源可以看看:

个人比较推荐这两个平台结合起来看,可以在gitte上学习,在github中找一些优秀的库。

...

总结

暑期的学习差不多结束了,接下来也将进入深度学习的系统学习。本文对一些传统的机器学习算法做了一些总结,并且初步介绍了什么是深度学习。

玄之又玄,众妙之门。

--2023-9-14 筑基篇

相关推荐
闭月之泪舞28 分钟前
OpenCv高阶(十)——光流估计
人工智能·opencv·计算机视觉
layneyao34 分钟前
大语言模型(LLM)的Prompt Engineering:从入门到精通
人工智能·语言模型·prompt
一点.点34 分钟前
李沐动手深度学习(pycharm中运行笔记)——04.数据操作
pytorch·笔记·python·深度学习·pycharm·动手深度学习
边缘计算社区1 小时前
FPGA与边缘AI:计算革命的前沿力量
人工智能·fpga开发
飞哥数智坊2 小时前
打工人周末充电:15条AI资讯助你领先一小步
人工智能
Tech Synapse2 小时前
基于CARLA与PyTorch的自动驾驶仿真系统全栈开发指南
人工智能·opencv·sqlite
layneyao2 小时前
深度强化学习(DRL)实战:从AlphaGo到自动驾驶
人工智能·机器学习·自动驾驶
悲喜自渡7212 小时前
线性代数(一些别的应该关注的点)
python·线性代数·机器学习
海特伟业2 小时前
隧道调频广播覆盖的实现路径:隧道无线广播技术赋能行车安全升级,隧道汽车广播收音系统助力隧道安全管理升级
人工智能
CareyWYR2 小时前
每周AI论文速递(250421-250425)
人工智能