算法通关村第十六关:黄金挑战:滑动窗口与堆结合

黄金挑战:滑动窗口与堆结合

堆的大小一般是有限的,能直接返回当前位置下的最大值或者最小值

该特征与滑动窗口结合,可以解决一些特定场景的问题

1. 滑动窗口与堆问题的结合

LeetCode239
https://leetcode.cn/problems/sliding-window-maximum/

思路分析

对于最大值,K个最大这种场景,优先队列(堆)是首先该考虑的思路。

大根堆可以帮我们实时维护一系列元素的最大值

具体执行:

  • 先将数组的前K个元素放入大根堆中,此时最大值为堆顶元素
  • 每当窗口右移时,将新元素放入大根堆中,此时最大值可能不在滑动窗口中
    最大值为滑动窗口的前一个元素,此时需要将堆顶元素移除,直到堆顶元素在滑动窗口中
    最大值为滑动窗口中的元素,此时最大值就是堆顶元素
  • 为了方便判断堆顶元素与滑动窗口的位置关系,我们可以在有限队列中存储二元组(num, index),表示元素 num 在数组中的下标为 index

代码实现

python 复制代码
import heapq

class Solution:
    def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
        n = len(nums)
        ans = []
        # 注意 Python 默认的优先队列是小根堆
        # pyhton 中(int,int)可正常比较大小 (1, 0) < (2, 0), (1, 0) < (1, 1)
        heap = [(-nums[i], i) for i in range(k)]
        heapq.heapify(heap)

        ans.append(-heap[0][0])
        for i in range(n-k):
            heapq.heappush(heap, (-nums[i+k], i+k))
            # 移除堆顶元素,直到堆顶元素在滑动窗口中
            while heap[0][1] <= i:
                heapq.heappop(heap)
            ans.append(-heap[0][0])

        return ans
相关推荐
资深web全栈开发8 分钟前
LeetCode 3625. 统计梯形的数目 II
算法·leetcode·组合数学
橘颂TA9 分钟前
【剑斩OFFER】算法的暴力美学——外观数列
算法·leetcode·职场和发展·结构与算法
Liangwei Lin11 分钟前
洛谷 P1434 [SHOI2002] 滑雪
算法
c#上位机28 分钟前
halcon图像增强之自动灰度拉伸
图像处理·算法·c#·halcon·图像增强
rit843249931 分钟前
压缩感知信号恢复算法:OMP与CoSaMP对比分析
数据库·人工智能·算法
Pluchon1 小时前
硅基计划4.0 算法 FloodFill算法
java·算法·leetcode·决策树·逻辑回归·深度优先·图搜索算法
菜鸟233号2 小时前
力扣347. 前k个高频元素 java实现
算法
Xの哲學3 小时前
Linux设备管理:从内核驱动到用户空间的完整架构解析
linux·服务器·算法·架构·边缘计算
xinyu_Jina3 小时前
Info Flow:去中心化数据流、跨协议标准化与信息源权重算法
算法·去中心化·区块链
Jac_kie_層樓3 小时前
力扣hot100刷题记录(12.2)
算法·leetcode·职场和发展