算法通关村第十六关:黄金挑战:滑动窗口与堆结合

黄金挑战:滑动窗口与堆结合

堆的大小一般是有限的,能直接返回当前位置下的最大值或者最小值

该特征与滑动窗口结合,可以解决一些特定场景的问题

1. 滑动窗口与堆问题的结合

LeetCode239
https://leetcode.cn/problems/sliding-window-maximum/

思路分析

对于最大值,K个最大这种场景,优先队列(堆)是首先该考虑的思路。

大根堆可以帮我们实时维护一系列元素的最大值

具体执行:

  • 先将数组的前K个元素放入大根堆中,此时最大值为堆顶元素
  • 每当窗口右移时,将新元素放入大根堆中,此时最大值可能不在滑动窗口中
    最大值为滑动窗口的前一个元素,此时需要将堆顶元素移除,直到堆顶元素在滑动窗口中
    最大值为滑动窗口中的元素,此时最大值就是堆顶元素
  • 为了方便判断堆顶元素与滑动窗口的位置关系,我们可以在有限队列中存储二元组(num, index),表示元素 num 在数组中的下标为 index

代码实现

python 复制代码
import heapq

class Solution:
    def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
        n = len(nums)
        ans = []
        # 注意 Python 默认的优先队列是小根堆
        # pyhton 中(int,int)可正常比较大小 (1, 0) < (2, 0), (1, 0) < (1, 1)
        heap = [(-nums[i], i) for i in range(k)]
        heapq.heapify(heap)

        ans.append(-heap[0][0])
        for i in range(n-k):
            heapq.heappush(heap, (-nums[i+k], i+k))
            # 移除堆顶元素,直到堆顶元素在滑动窗口中
            while heap[0][1] <= i:
                heapq.heappop(heap)
            ans.append(-heap[0][0])

        return ans
相关推荐
【杨(_> <_)】10 小时前
SAR信号处理重要工具-傅里叶变换(二)
算法·信号处理·傅里叶分析·菲涅尔函数
怎么没有名字注册了啊10 小时前
爬动的蠕虫
算法
取酒鱼食--【余九】10 小时前
机器人学基础(一)【坐标系和位姿变换】
笔记·算法·机器人·开源·机器人运动学·机器人学基础
晨非辰10 小时前
【面试高频数据结构(四)】--《从单链到双链的进阶,读懂“双向奔赴”的算法之美与效率权衡》
java·数据结构·c++·人工智能·算法·机器学习·面试
im_AMBER10 小时前
数据结构 03 栈和队列
数据结构·学习·算法
凸头11 小时前
以AtomicInteger为例的Atomic 类的底层CAS细节理解
java·jvm·算法
前端小刘哥12 小时前
赋能在线教育与企业培训:视频直播点播平台EasyDSS视频点播的核心技术与应用实践
算法
吗~喽12 小时前
【LeetCode】四数之和
算法·leetcode·职场和发展
Net_Walke12 小时前
【散列函数】哈希函数简介
算法·哈希算法
卿言卿语12 小时前
CC1-二叉树的最小深度
java·数据结构·算法·leetcode·职场和发展