AWS SAA C003 #33

A company runs an online marketplace web application on AWS. The application serves hundreds of thousands of users during peak hours. The company needs a scalable, near-real-time solution to share the details of millions of financial transactions with several other internal applications. Transactions also need to be processed to remove sensitive data before being stored in a document database for low-latency retrieval.

What should a solutions architect recommend to meet these requirements?

A. Store the transactions data into Amazon DynamoDB. Set up a rule in DynamoDB to remove sensitive data from every transaction upon write. Use DynamoDB Streams to share the transactions data with other applications.

B. Stream the transactions data into Amazon Kinesis Data Firehose to store data in Amazon DynamoDB and Amazon S3. Use AWS Lambda integration with Kinesis Data Firehose to remove sensitive data. Other applications can consume the data stored in Amazon S3.

C. Stream the transactions data into Amazon Kinesis Data Streams. Use AWS Lambda integration to remove sensitive data from every transaction and then store the transactions data in Amazon DynamoDB. Other applications can consume the transactions data off the Kinesis data stream.

D. Store the batched transactions data in Amazon S3 as files. Use AWS Lambda to process every file and remove sensitive data before updating the files in Amazon S3. The Lambda function then stores the data in Amazon DynamoDB. Other applications can consume transaction files stored in Amazon S3.


The best option would be C. Stream the transactions data into Amazon Kinesis Data Streams.

This is because Amazon Kinesis Data Streams can handle the high volume of data and provide near-real-time data processing, which is crucial for this scenario. AWS Lambda integration can be used to process each transaction and remove sensitive data before storing it in Amazon DynamoDB. DynamoDB is a good choice for storing the processed transactions due to its low-latency data access capabilities. Other applications can consume the transactions data off the Kinesis data stream, ensuring that all applications have access to the latest transactions data.

Options A, B, and D have certain limitations:

  • Option A: DynamoDB does not have a built-in feature to remove sensitive data upon write.
  • Option B: Storing data in S3 would not provide the low-latency retrieval required for this use case.
  • Option D: Processing files in S3 with Lambda would not provide near-real-time data processing.

Therefore, option C is the most suitable solution for this scenario.

相关推荐
峰顶听歌的鲸鱼1 小时前
Kubernetes管理
运维·笔记·云原生·容器·kubernetes·云计算
阿里云云原生6 小时前
阿里云全新发布的 UModel 是什么
人工智能·阿里云·云计算·可观测·umodel
咕噜企业分发小米7 小时前
腾讯云多云管理工具如何与第三方合规工具集成?
云计算·腾讯云
翼龙云_cloud11 小时前
亚马逊云渠道商:RDS 三大数据库引擎深度对比 MySQL/PostgreSQL/SQL Server 如何选?
数据库·mysql·postgresql·aws
阿里云云原生12 小时前
阿里云可观测联合 Datadog 发布 OpenTelemetry Go 自动插桩工具
阿里云·golang·云计算·可观测
孤岛悬城12 小时前
64 K8s安全机制
kubernetes·云计算·k8s
合新通信 | 让光不负所托13 小时前
边缘计算节点空间受限,用浸没式液冷光模块能同时满足小型化和高性能需求吗?
大数据·人工智能·阿里云·云计算·边缘计算
China_Yanhy13 小时前
生产级 Amazon MSK (Express 模式) 架构构建与选型实战白皮书
架构·kafka·云计算·aws
skywalk816313 小时前
阿里云的esc云服务器安装FreeBSD是否支持zfs文件系统
服务器·阿里云·云计算·freebsd
Kaede61 天前
排除网络故障需要做什么?查看网络故障的步骤
网络安全·云计算