AWS SAA C003 #33

A company runs an online marketplace web application on AWS. The application serves hundreds of thousands of users during peak hours. The company needs a scalable, near-real-time solution to share the details of millions of financial transactions with several other internal applications. Transactions also need to be processed to remove sensitive data before being stored in a document database for low-latency retrieval.

What should a solutions architect recommend to meet these requirements?

A. Store the transactions data into Amazon DynamoDB. Set up a rule in DynamoDB to remove sensitive data from every transaction upon write. Use DynamoDB Streams to share the transactions data with other applications.

B. Stream the transactions data into Amazon Kinesis Data Firehose to store data in Amazon DynamoDB and Amazon S3. Use AWS Lambda integration with Kinesis Data Firehose to remove sensitive data. Other applications can consume the data stored in Amazon S3.

C. Stream the transactions data into Amazon Kinesis Data Streams. Use AWS Lambda integration to remove sensitive data from every transaction and then store the transactions data in Amazon DynamoDB. Other applications can consume the transactions data off the Kinesis data stream.

D. Store the batched transactions data in Amazon S3 as files. Use AWS Lambda to process every file and remove sensitive data before updating the files in Amazon S3. The Lambda function then stores the data in Amazon DynamoDB. Other applications can consume transaction files stored in Amazon S3.


The best option would be C. Stream the transactions data into Amazon Kinesis Data Streams.

This is because Amazon Kinesis Data Streams can handle the high volume of data and provide near-real-time data processing, which is crucial for this scenario. AWS Lambda integration can be used to process each transaction and remove sensitive data before storing it in Amazon DynamoDB. DynamoDB is a good choice for storing the processed transactions due to its low-latency data access capabilities. Other applications can consume the transactions data off the Kinesis data stream, ensuring that all applications have access to the latest transactions data.

Options A, B, and D have certain limitations:

  • Option A: DynamoDB does not have a built-in feature to remove sensitive data upon write.
  • Option B: Storing data in S3 would not provide the low-latency retrieval required for this use case.
  • Option D: Processing files in S3 with Lambda would not provide near-real-time data processing.

Therefore, option C is the most suitable solution for this scenario.

相关推荐
荣光波比5 小时前
Linux(十一)——LVM磁盘配额整理
linux·运维·云计算
牛奶咖啡136 小时前
云计算核心技术之容器技术
云计算·容器技术·容器引擎·容器的主要应用场景·docker核心技术·容器编排工具·k8s的运行架构和重要概念
无责任此方_修行中7 小时前
从 HTTP 轮询到 MQTT:我们在 AWS IoT Core 上的架构演进与实战复盘
后端·架构·aws
XINVRY-FPGA11 小时前
10CL016YF484C8G Altera FPGA Cyclone
嵌入式硬件·网络协议·fpga开发·云计算·硬件工程·信息与通信·fpga
AKAMAI1 天前
AI需要防火墙,云计算需要重新构想
人工智能·云原生·云计算
是乐谷2 天前
阿里云杭州 AI 产品法务岗位信息分享(2025 年 8 月)
java·人工智能·阿里云·面试·职场和发展·机器人·云计算
青岛佰优联创新科技有限公司2 天前
移动板房的网络化建设
服务器·人工智能·云计算·智慧城市
夕阳与风馨2 天前
三分钟搞懂云计算三大模型:SaaS、PaaS、IaaS 是怎么在业务中“各司其职”的?
后端·云计算
weixin_307779133 天前
AWS Lambda解压缩S3 ZIP文件流程
python·算法·云计算·aws
运维行者_3 天前
使用Applications Manager进行 Apache Solr 监控
运维·网络·数据库·网络安全·云计算·apache·solr