AWS SAA C003 #33

A company runs an online marketplace web application on AWS. The application serves hundreds of thousands of users during peak hours. The company needs a scalable, near-real-time solution to share the details of millions of financial transactions with several other internal applications. Transactions also need to be processed to remove sensitive data before being stored in a document database for low-latency retrieval.

What should a solutions architect recommend to meet these requirements?

A. Store the transactions data into Amazon DynamoDB. Set up a rule in DynamoDB to remove sensitive data from every transaction upon write. Use DynamoDB Streams to share the transactions data with other applications.

B. Stream the transactions data into Amazon Kinesis Data Firehose to store data in Amazon DynamoDB and Amazon S3. Use AWS Lambda integration with Kinesis Data Firehose to remove sensitive data. Other applications can consume the data stored in Amazon S3.

C. Stream the transactions data into Amazon Kinesis Data Streams. Use AWS Lambda integration to remove sensitive data from every transaction and then store the transactions data in Amazon DynamoDB. Other applications can consume the transactions data off the Kinesis data stream.

D. Store the batched transactions data in Amazon S3 as files. Use AWS Lambda to process every file and remove sensitive data before updating the files in Amazon S3. The Lambda function then stores the data in Amazon DynamoDB. Other applications can consume transaction files stored in Amazon S3.


The best option would be C. Stream the transactions data into Amazon Kinesis Data Streams.

This is because Amazon Kinesis Data Streams can handle the high volume of data and provide near-real-time data processing, which is crucial for this scenario. AWS Lambda integration can be used to process each transaction and remove sensitive data before storing it in Amazon DynamoDB. DynamoDB is a good choice for storing the processed transactions due to its low-latency data access capabilities. Other applications can consume the transactions data off the Kinesis data stream, ensuring that all applications have access to the latest transactions data.

Options A, B, and D have certain limitations:

  • Option A: DynamoDB does not have a built-in feature to remove sensitive data upon write.
  • Option B: Storing data in S3 would not provide the low-latency retrieval required for this use case.
  • Option D: Processing files in S3 with Lambda would not provide near-real-time data processing.

Therefore, option C is the most suitable solution for this scenario.

相关推荐
孤岛悬城12 小时前
阿里云实战:RuoYi项目上云
云原生·云计算
kingmax5421200812 小时前
AWS ML Specialist 考试备考指南
云计算·aws·ai证书·ai认证
Tab6091 天前
智能家居接入Alexa App和语音平台
智能家居·aws
@HNUSTer1 天前
基于 GEE 利用多波段合成的方法高效处理并下载数据——以 MODIS 潜热通量(LE)年均值数据产品下载为例
云计算·数据集·遥感大数据·gee·云平台·modis·潜热通量(le)
weixin_307779132 天前
在AWS上构建类Manus的生产级AI Agent服务
运维·人工智能·云计算·aws·agi
bluetata2 天前
申请 AWS Community Builder 详细指南
云计算·aws
忍冬行者2 天前
Elasticsearch 超大日志流量集群搭建(网关 + 独立 Master + 独立 Data 纯生产架构,角色完全分离,百万级日志吞吐)
大数据·elasticsearch·云原生·架构·云计算
观测云2 天前
AWS Lambda Python 应用可观测最佳实践(DDTrace)
python·云计算·aws
Ydwlcloud2 天前
AWS 2026折扣活动深度解析:寻找最大优惠的智慧路径
大数据·服务器·人工智能·云计算·aws
曹天骄2 天前
Cloudflare Worker vs 阿里云 DCND:回源次数、链路结构与真实性能对比
运维·阿里云·云计算