AWS SAA C003 #33

A company runs an online marketplace web application on AWS. The application serves hundreds of thousands of users during peak hours. The company needs a scalable, near-real-time solution to share the details of millions of financial transactions with several other internal applications. Transactions also need to be processed to remove sensitive data before being stored in a document database for low-latency retrieval.

What should a solutions architect recommend to meet these requirements?

A. Store the transactions data into Amazon DynamoDB. Set up a rule in DynamoDB to remove sensitive data from every transaction upon write. Use DynamoDB Streams to share the transactions data with other applications.

B. Stream the transactions data into Amazon Kinesis Data Firehose to store data in Amazon DynamoDB and Amazon S3. Use AWS Lambda integration with Kinesis Data Firehose to remove sensitive data. Other applications can consume the data stored in Amazon S3.

C. Stream the transactions data into Amazon Kinesis Data Streams. Use AWS Lambda integration to remove sensitive data from every transaction and then store the transactions data in Amazon DynamoDB. Other applications can consume the transactions data off the Kinesis data stream.

D. Store the batched transactions data in Amazon S3 as files. Use AWS Lambda to process every file and remove sensitive data before updating the files in Amazon S3. The Lambda function then stores the data in Amazon DynamoDB. Other applications can consume transaction files stored in Amazon S3.


The best option would be C. Stream the transactions data into Amazon Kinesis Data Streams.

This is because Amazon Kinesis Data Streams can handle the high volume of data and provide near-real-time data processing, which is crucial for this scenario. AWS Lambda integration can be used to process each transaction and remove sensitive data before storing it in Amazon DynamoDB. DynamoDB is a good choice for storing the processed transactions due to its low-latency data access capabilities. Other applications can consume the transactions data off the Kinesis data stream, ensuring that all applications have access to the latest transactions data.

Options A, B, and D have certain limitations:

  • Option A: DynamoDB does not have a built-in feature to remove sensitive data upon write.
  • Option B: Storing data in S3 would not provide the low-latency retrieval required for this use case.
  • Option D: Processing files in S3 with Lambda would not provide near-real-time data processing.

Therefore, option C is the most suitable solution for this scenario.

相关推荐
AKAMAI12 小时前
Sport Network 凭借 Akamai 实现卓越成就
人工智能·云原生·云计算
10岁的博客18 小时前
《云计算如何驱动企业数字化转型:关键技术与实践案例》
云计算
m0_694845572 天前
教你使用服务器如何搭建数据库
linux·运维·服务器·数据库·云计算
shinelord明2 天前
【数据行业发展】可信数据空间~数据价值的新型基础设施
大数据·架构·云计算·创业创新
XINVRY-FPGA2 天前
XCKU15P-2FFVA1760I AMD 赛灵思 Xilinx Kintex UltraScale+ FPGA
arm开发·嵌入式硬件·阿里云·fpga开发·云计算·硬件工程·fpga
王道长服务器 | 亚马逊云2 天前
一个迁移案例:从传统 IDC 到 AWS 的真实对比
java·spring boot·git·云计算·github·dubbo·aws
世间小小鱼2 天前
【爬坑指南】亚马逊文件中心 AWS S3 预签名URL 前端直传
前端·云计算·aws
TG_yunshuguoji2 天前
亚马逊云代理商:AWS亚马逊云的独特优势与实用价值
服务器·云计算·aws
阿雄不会写代码2 天前
AWS strands agents 当智能体作为独立服务/容器部署时,它们无法共享进程内状态
云计算·aws
广州腾科助你拿下华为认证2 天前
华为HCIE-云计算培训课程有哪些?
华为·云计算·hcie认证