DataFrame中的isin查询使用

代码实例:

1)包含

df1=df[ df["学号"].isin(myNumber)]

2)不包含

df1=df[ ~df["学号"].isin(myNumber)]

3)多条件

或(满足某一个即可)

filt_1 = df['name'].isin(['网易','百度'])

filt_2 = df['age'] == df['age'].min()

df2= df[ filt_1 | filt_2 ]

并且(同时满足多个条件)

filter1 = data["Gender"].isin(["Female"])

filter2 = data["Team"].isin(["Engineering", "Distribution", "Finance" ])

data[filter1 & filter2]

=======================================================

  1. DataFrame条件查询操作

获取DataFrame中满足条件的数据

基本格式:

df.loc[条件...]

df.query('条件...')

loc和query如果跟多个条件可以用&、|表示条件之间的关系

#获取Age大于60且小于80的科学家信息

scientists.loc[(scientists['Age']>60)&(scientists['Age']<80)]

scientists.loc[(scientists.Age>60)&(scientists.Age<80)]

scientists.query('Age > 60 & Age < 80')

  1. DataFrame分组聚合操作

指定列分组,并对分组数据的相应列进行行相应的聚合操作

基本格式:

df.groupby(列标签,...).列标签.聚合函数()

df.groupby(列标签,...).agg({'列标签':'聚合',...})

df.groupby(列标签,...).aggregate({'列标签':'聚合',...})

如果聚合的列标签只有一个,则返回的是一个Series数据

常见聚合函数:

方式 说明

mean 计算平均值

max 计算最大值

min 计算最小值

sum 求和

count 计数(非空数据数目)

#按照Occupation职业分组,并计算每组年龄的平均值

scientists.groupby('Occupation').Age.mean()

scientists.groupby('Occupation')['Age'].mean()

#按照Occupation职业分组,并计算每组人数和年龄的平均值

scientists.groupby('Occupation').agg({'Name':'count','Age':'mean'})

  1. DataFrame排序操作

基本格式:

方法 说明

df.sort_values(by=['列标签'],ascending=True) 将DataFrame按照指定列标签按升序进行排序

df.sort_index(ascending=True) 将DataFrame按照行标签升序排序

ascending参数默认是True表示升序

seies也可以使用sort_values和sort_index函数进行排序,只不过series的sort_values方法没有by参数

#按照 Age 从小到大进行排序

scientists.sort_values(by=['Age'],ascending=True)

#按照 Age 从大到小进行排序

scientists.sort_values(by=['Age'],ascending=False)

按照行标签从大到小进行排序

scientists.sort_index(ascending=False)

  1. nlargest和nsmallest函数

基本格式:

方法 说明

df.nlargest(n,columns='列标签')

按照columns指定的列进行降序,并取前n行数据

df.nsmallest(n,columns='列标签') 按照columns指定的列进行升序,并取前n行数据

#获取 Age 最大的前 3 行数据

scientists.nlargest(3,columns='Age')

#获取 Age 最小的前 3 行数据

scientists.nsmallest(3,columns='Age')

相关推荐
合作小小程序员小小店19 分钟前
SDN安全开发环境中常见的框架,工具,第三方库,mininet常见指令介绍
python·安全·生成对抗网络·网络安全·网络攻击模型
后台开发者Ethan22 分钟前
Python需要了解的一些知识
开发语言·人工智能·python
北京_宏哥31 分钟前
Python零基础从入门到精通详细教程11 - python数据类型之数字(Number)-浮点型(float)详解
前端·python·面试
盼小辉丶1 小时前
PyTorch生成式人工智能——使用MusicGen生成音乐
pytorch·python·深度学习·生成模型
HAPPY酷3 小时前
给纯小白的Python操作 PDF 笔记
开发语言·python·pdf
传奇开心果编程4 小时前
【传奇开心果系列】Flet框架实现的家庭记账本示例自定义模板
python·学习·ui·前端框架·自动化
王者鳜錸5 小时前
PYTHON让繁琐的工作自动化-PYTHON基础
python·microsoft·自动化
key_Go5 小时前
7.Ansible自动化之-实施任务控制
python·ansible·numpy
wyiyiyi12 小时前
【Web后端】Django、flask及其场景——以构建系统原型为例
前端·数据库·后端·python·django·flask
mit6.82413 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python