Baichuan 2: Open Large-scale Language Models

本文是LLM系列文章,针对《Baichuan 2: Open Large-scale Language Models

》的翻译。

Baichuan2:开放的大规模语言模型

  • 摘要
  • [1 引言](#1 引言)
  • [2 预训练](#2 预训练)
  • [3 对齐](#3 对齐)
  • [4 安全性](#4 安全性)
  • [5 评估](#5 评估)
  • [6 相关工作](#6 相关工作)
  • [7 限制和道德考虑](#7 限制和道德考虑)

摘要

大型语言模型(LLM)在基于自然语言指令的几个例子的各种自然语言任务中表现出了显著的性能,从而减少了对广泛功能工程的需求。然而,大多数强大的LLM都是封闭源代码的,或者对英语以外的语言的能力有限。在这份技术报告中,我们展示了百川2,这是一系列包含70亿和130亿参数的大型多语言模型,在2.6万亿token上从头开始训练。百川2在MMLU、CMMLU、GSM8K和HumanEval等公共基准测试上与其他类似规模的开源模型相匹配或优于其他开源模型。此外,百川2在医药、法律等垂直领域表现突出。我们将发布所有训练前模型检查点,以帮助研究界更好地了解百川2号的训练动态。

1 引言

2 预训练

3 对齐

4 安全性

5 评估

6 相关工作

7 限制和道德考虑

与其他大型语言模型一样,百川2也面临着伦理挑战。它容易产生偏见和毒性,特别是考虑到它的大部分训练数据来自互联网。尽管我们尽了最大努力使用Toxigen等基准来缓解这些问题,但风险无法消除,而且毒性往往会随着模型的大小而增加。此外,百川2号模型的知识是静态的,可能已经过时或不正确,这对医学或法律等需要最新信息的领域提出了挑战。虽然为了安全起见,该模型针对中文和英文进行了优化,但在其他语言中存在局限性,可能无法完全捕捉到与非中文文化相关的偏见。

还有滥用的可能性,因为该模型可能被用来生成有害或误导性的内容。尽管我们尽最大努力平衡安全性和实用性,但一些安全措施可能会显得过于谨慎,影响模型在某些任务中的可用性。我们鼓励用户负责任、合乎道德地使用百川2模型。同时,我们将继续优化这些问题,并在未来发布更新版本。

相关推荐
MYZR115 小时前
瑞萨电子:嵌入式计算与芯片技术的创新引领者
人工智能·核心板·ssd2351
胡耀超15 小时前
大模型架构演进全景:从Transformer到下一代智能系统的技术路径(MoE、Mamba/SSM、混合架构)
人工智能·深度学习·ai·架构·大模型·transformer·技术趋势分析
小杨勇敢飞16 小时前
UNBIASED WATERMARK:大语言模型的无偏差水印
人工智能·语言模型·自然语言处理
m0_6038887116 小时前
Delta Activations A Representation for Finetuned Large Language Models
人工智能·ai·语言模型·自然语言处理·论文速览
金融小师妹16 小时前
基于哈塞特独立性表态的AI量化研究:美联储政策独立性的多维验证
大数据·人工智能·算法
qinyia17 小时前
Wisdom SSH 是一款创新性工具,通过集成 AI 助手,为服务器性能优化带来极大便利。
服务器·人工智能·ssh
昨日之日200619 小时前
Wan2.2-S2V - 音频驱动图像生成电影级质量的数字人视频 ComfyUI工作流 支持50系显卡 一键整合包下载
人工智能·音视频
SEO_juper1 天前
大型语言模型SEO(LLM SEO)完全手册:驾驭搜索新范式
人工智能·语言模型·自然语言处理·chatgpt·llm·seo·数字营销
攻城狮7号1 天前
腾讯混元翻译模型Hunyuan-MT-7B开源,先前拿了30个冠军
人工智能·hunyuan-mt-7b·腾讯混元翻译模型·30个冠军
zezexihaha1 天前
从“帮写文案”到“管生活”:个人AI工具的边界在哪?
人工智能