python数据分析从入门到进阶:分类算法实现:上(含详细代码)

《python机器学习从入门到高级》分类算法:(上)

引言

我们在之前的文章已经介绍了机器学习的一些基础概念,当拿到一个数据之后如何处理、如何评估一个模型、以及如何对模型调参等。接下来,我们正式开始学习如何实现机器学习的一些算法。 回归和分类是机器学习的两大最基本的问题,对于分类算法的详细理论部分。 本文主要从python代码的角度来实现分类算法。

python 复制代码
# 导入相关库
import sklearn
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

🌳1. 数据准备

下面我们以mnist数据集为例进行演示,这是一组由美国人口普查局的高中生和雇员手写的70000个数字图像。每个图像都用数字表示。也是分类问题非常经典的一个数据集

python 复制代码
# 导入mnist数据集
from sklearn.datasets import fetch_openml
mnist = fetch_openml('mnist_784', version=1, as_frame=False)
mnist.keys()
css 复制代码
dict_keys(['data', 'target', 'frame', 'categories', 'feature_names', 'target_names', 'DESCR', 'details', 'url'])

其中data是我们输入的特征,target0-9的数字

python 复制代码
X, y = mnist["data"], mnist["target"]
X.shape,y.shape
scss 复制代码
((70000, 784), (70000,))

可以看出一共有70000图像,其中X一共有784个特征,这是因为图像是28×28的,每个特征是0-255之间的。下面我们通过imshow()函数将其进行还原

python 复制代码
%matplotlib inline
import matplotlib as mpl
digit = X[0]
digit_image = digit.reshape((28, 28))#还原成28×28
plt.imshow(digit_image, cmap=mpl.cm.binary)
plt.axis("off")
plt.savefig("some_digit_plot")
plt.show()


从我们人类角度来看,我们很容易辨别它是5,我们要做的是,当给机器一张图片时,它能辨别出正确的数字吗?我们来看看y的值

python 复制代码
y[0]
arduino 复制代码
'5'

我们要实现的就是,给我们一张图片,不难发现这是一个==多分类任务==,下面我们正式进入模型建立,首先将数据集划分为==训练集和测试集==,这里简单的将前60000个划分为训练集,后10000个为测试集,具体代码如下

python 复制代码
y = y.astype(np.uint8)#将y转换成整数
X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]

🌴2.简单二元分类实现

在实现多分类任务之前,我们先从一个简单的问题考虑,现在假设我只想知道给我一张图片,它是否是7(我最喜欢的数字)。这个时候就是一个简单的二分类问题,首先我们要将我们的目标变量进行转变,具体代码如下

python 复制代码
y_train_7 = (y_train == 7)
y_test_7 = (y_test == 7)

现在,我们选择一个分类器并对其进行训练。我们先使用==SGD==(随机梯度下降)分类器

python 复制代码
from sklearn.linear_model import SGDClassifier
sgd_clf = SGDClassifier(max_iter=1000, tol=1e-3, random_state=123)#设置random_state为了结果的重复性
sgd_clf.fit(X_train, y_train_7)
ini 复制代码
SGDClassifier(random_state=123)

训练好模型之后我们可以进行预测,以第一张图片为例,我们预测一下它是否是7(很显然我们知道不是)

python 复制代码
sgd_clf.predict(X[0].reshape((1,-1)))
scss 复制代码
array([False])

可以看出判断正确了,在之前我们讨论了==模型评估==的方法,详细介绍看这篇文章:Python机器学习从入门到高级:模型评估和选择(含详细代码) 下面演示如何用代码实现各个评估指标

🌵3.模型评估

我们根据分类评估指标来看看SGD分类器效果

🌾3.1 准确率

python 复制代码
from sklearn.model_selection import cross_val_score
cross_val_score(sgd_clf, X_train, y_train_7, cv=3, scoring="accuracy")
scss 复制代码
array([0.97565, 0.97655, 0.963  ])

🌿3.2 混淆矩阵

python 复制代码
y_train_pred = sgd_clf.predict(X_train)
python 复制代码
from sklearn.metrics import confusion_matrix
confusion_matrix(y_train_7, y_train_pred)
lua 复制代码
array([[53304,   431],
       [  550,  5715]], dtype=int64)

☘️3.3 召回率和精确度

python 复制代码
from sklearn.metrics import precision_score, recall_score

print('precision:',precision_score(y_train_7, y_train_pred))
print('recall:',recall_score(y_train_7,y_train_pred))
makefile 复制代码
precision: 0.929873088187439
recall: 0.9122106943335994

下面要用的matplotlib,想了解matplotlib可以看这篇文章:Python数据可视化大杀器之地阶技法:matplotlib(含详细代码)

🍁3.4 ROC曲线

python 复制代码
from sklearn.metrics import roc_curve

fpr, tpr, thresholds = roc_curve(y_train_7, y_scores)
plt.plot(fpr, tpr, linewidth=2)
plt.plot([0, 1], [0, 1], 'k--') 
plt.axis([0, 1, 0, 1])                                   
plt.xlabel('False Positive Rate (Fall-Out)', fontsize=16) 
plt.ylabel('True Positive Rate (Recall)', fontsize=16)    
plt.grid(True)                  


本章的介绍到此介绍,下一章介绍分类算法(下):如何完成多分类任务

相关推荐
浊酒南街1 小时前
决策树python实现代码1
python·算法·决策树
FreedomLeo12 小时前
Python机器学习笔记(十三、k均值聚类)
python·机器学习·kmeans·聚类
星光樱梦2 小时前
32. 线程、进程与协程
python
阿正的梦工坊2 小时前
深入理解 PyTorch 的 view() 函数:以多头注意力机制(Multi-Head Attention)为例 (中英双语)
人工智能·pytorch·python
测试者家园2 小时前
ChatGPT助力数据可视化与数据分析效率的提升(一)
软件测试·人工智能·信息可视化·chatgpt·数据挖掘·数据分析·用chatgpt做软件测试
疯狂小羊啊2 小时前
数据分析篇001
数据挖掘·数据分析
西猫雷婶2 小时前
python学opencv|读取图像(十九)使用cv2.rectangle()绘制矩形
开发语言·python·opencv
小馒头学python2 小时前
数据分析的常见问题及解决方案
数据挖掘·数据分析
海绵波波1073 小时前
flask后端开发(10):问答平台项目结构搭建
后端·python·flask
赵谨言3 小时前
基于python网络爬虫的搜索引擎设计
爬虫·python·搜索引擎