【个人笔记本】本地化部署 类chatgpt模型 详细流程

不推荐小白,环境配置比较复杂

全部流程

  • 下载原始模型:Chinese-LLaMA-Alpaca-2
  • linux部署llamacpp环境
  • 使用llamacpp将Chinese-LLaMA-Alpaca-2模型转换为gguf模型
  • windows部署Text generation web UI 环境
  • 使用Text generation web UI 加载模型并进行对话

准备工作

  1. 笔记本环境:

    • 操作系统:win11
    • CPU:AMD R7535HS
    • GPU:笔记本4060显卡
    • CUDA版本:11.8
    • VM虚拟机:Ubuntu16
  2. 下载模型和部署环境全程需要挂梯子


下载原始模型

原项目链接:https://github.com/ymcui/Chinese-LLaMA-Alpaca-2

模型名称 类型 大小 下载地址
Chinese-LLaMA-2-13B 基座模型 24.7 GB [百度] [Google] [🤗HF]
Chinese-LLaMA-2-7B 基座模型 12.9 GB [百度] [Google] [🤗HF]
Chinese-Alpaca-2-13B 指令模型 24.7 GB [百度] [Google] [🤗HF]
Chinese-Alpaca-2-7B 指令模型 12.9 GB [百度] [Google] [🤗HF]

下载Chinese-Alpaca-2-7B模型即可,百度网盘不需要挂梯子,其他都需要梯子


linux部署llamacpp环境

原项目链接:https://github.com/ggerganov/llama.cpp

原文档链接:https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/wiki/llamacpp_zh

Step 1: 安装python3.10

bash 复制代码
sudo apt update
sudo apt install python3.10

Step 2: 克隆和编译llama.cpp

  1. 拉取最新版llama.cpp仓库代码

    bash 复制代码
    # 要安装git+梯子
    git clone https://github.com/ggerganov/llama.cpp

    或者

    bash 复制代码
    #浏览器挂梯子打开https://github.com/ggerganov/llama.cpp
    #下载项目
    #解压缩项目到本地
  2. 对llama.cpp项目进行编译,生成./main(用于推理)和./quantize(用于量化)二进制文件

    bash 复制代码
    cd 解压缩项目路径
    make

Step 3: 生成量化版本模型

  1. 创建目录并拷贝模型到项目目录:zh-models/7B/

  2. 将Chinese-LLaMA-Alpaca-2模型转换为gguf模型

    bash 复制代码
    #根目录
    python convert.py zh-models/7B/
  3. 将生成的fp16格式的gguf模型进行4-bit量化

    bash 复制代码
    ./quantize ./zh-models/7B/ggml-model-f16.gguf ./zh-models/7B/ggml-model-q4_0.gguf q4_0

Step 4: 加载并启动模型

到这一步其实可以用llama.cpp的加载模型方式对话了

但我用的虚拟机,性能有限,故而使用Text generation web UI 加载模型,具体如何加载建议看原文档和项目说明


windows部署Text generation web UI 环境

原项目:https://github.com/oobabooga/text-generation-webui

Step 1: 下载安装Miniconda3_py310

链接:https://repo.anaconda.com/miniconda/Miniconda3-py310_23.3.1-0-Windows-x86_64.exe

Step 2: 克隆项目到本地

bash 复制代码
git clone  https://github.com/oobabooga/text-generation-webui

Step 3: 打开Miniconda3命令行,建立新conda环境

bash 复制代码
conda create -n textgen

Step 4: 下载安装相关的python各类环境库

有github链接的必须手动下载whl,再pip安装whl的绝对位置

bash 复制代码
conda activate textgen
cd 项目位置
pip install env/bitsandbytes-0.41.1-py3-none-win_amd64.whl
pip install E:\AI\环境第三方库\auto_gptq-0.4.2+cu117-cp310-cp310-win_amd64.whl

https://github.com/jllllll/exllama/releases/download/0.0.17/exllama-0.0.17+cu117-cp310-cp310-win_amd64.whl
pip install E:\AI\环境第三方库\exllama-0.0.17+cu117-cp310-cp310-win_amd64.whl

pip install llama-cpp-python==0.1.84

https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.1.84+cu117-cp310-cp310-win_amd64.whl
pip install E:\AI\环境第三方库\llama_cpp_python_cuda-0.1.84+cu117-cp310-cp310-win_amd64.whl

https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.0/gptq_for_llama-0.1.0+cu117-cp310-cp310-win_amd64.whl
pip install E:\AI\环境第三方库\gptq_for_llama-0.1.0+cu117-cp310-cp310-win_amd64.whl

https://github.com/jllllll/ctransformers-cuBLAS-wheels/releases/download/AVX2/ctransformers-0.2.25+cu117-py3-none-any.whl
pip install E:\AI\环境第三方库\ctransformers-0.2.25+cu117-py3-none-any.whl

pip install -r requirements.txt -i 换源

Step 5: 启动web服务

bash 复制代码
conda activate textgen
cd E:/AI/项目/text-generation-webui-main
python server.py

使用Text generation web UI 加载模型并进行对话

  1. 打开生成的url网址
  2. 加载本地模型
  3. 对话即可
相关推荐
没有梦想的咸鱼185-1037-166317 小时前
AI大模型支持下的:ArcGIS数据处理、空间分析、可视化及多案例综合应用
人工智能·arcgis·chatgpt·数据分析
梦想的初衷~21 小时前
AI赋能科研创新:ChatGPT-4o与DeepSeek-R1在学术研究中的深度应用指南
机器学习·语言模型·chatgpt
何玺1 天前
豆包、元宝、Kimi等AI对话大模型会成为“带货”主流吗?
人工智能·chatgpt
SiYuanFeng1 天前
chatgpt5胡乱回答?乱回复?如何取消chatgpt 的记忆功能优化?
chatgpt
算法打盹中2 天前
深入解析 Transformer 模型:以 ChatGPT 为例从词嵌入到输出预测的大语言模型核心工作机制
人工智能·深度学习·语言模型·chatgpt·transformer·1024程序员节
猿代码_xiao3 天前
大模型微调完整步骤( LLama-Factory)
人工智能·深度学习·自然语言处理·chatgpt·llama·集成学习
CV视觉4 天前
智能体综述:探索基于大型语言模型的智能体:定义、方法与前景
人工智能·语言模型·chatgpt·stable diffusion·prompt·aigc·agi
SEO_juper4 天前
内容创作者的新赛道:如何通过ChatGPT SEO获取下一代流量
chatgpt·seo·1024程序员节·数字营销
nkwshuyi4 天前
ChatGPT Atlas Agent 如何帮你采集数据和调研?
人工智能·chatgpt