【个人笔记本】本地化部署 类chatgpt模型 详细流程

不推荐小白,环境配置比较复杂

全部流程

  • 下载原始模型:Chinese-LLaMA-Alpaca-2
  • linux部署llamacpp环境
  • 使用llamacpp将Chinese-LLaMA-Alpaca-2模型转换为gguf模型
  • windows部署Text generation web UI 环境
  • 使用Text generation web UI 加载模型并进行对话

准备工作

  1. 笔记本环境:

    • 操作系统:win11
    • CPU:AMD R7535HS
    • GPU:笔记本4060显卡
    • CUDA版本:11.8
    • VM虚拟机:Ubuntu16
  2. 下载模型和部署环境全程需要挂梯子


下载原始模型

原项目链接:https://github.com/ymcui/Chinese-LLaMA-Alpaca-2

模型名称 类型 大小 下载地址
Chinese-LLaMA-2-13B 基座模型 24.7 GB [百度] [Google] [🤗HF]
Chinese-LLaMA-2-7B 基座模型 12.9 GB [百度] [Google] [🤗HF]
Chinese-Alpaca-2-13B 指令模型 24.7 GB [百度] [Google] [🤗HF]
Chinese-Alpaca-2-7B 指令模型 12.9 GB [百度] [Google] [🤗HF]

下载Chinese-Alpaca-2-7B模型即可,百度网盘不需要挂梯子,其他都需要梯子


linux部署llamacpp环境

原项目链接:https://github.com/ggerganov/llama.cpp

原文档链接:https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/wiki/llamacpp_zh

Step 1: 安装python3.10

bash 复制代码
sudo apt update
sudo apt install python3.10

Step 2: 克隆和编译llama.cpp

  1. 拉取最新版llama.cpp仓库代码

    bash 复制代码
    # 要安装git+梯子
    git clone https://github.com/ggerganov/llama.cpp

    或者

    bash 复制代码
    #浏览器挂梯子打开https://github.com/ggerganov/llama.cpp
    #下载项目
    #解压缩项目到本地
  2. 对llama.cpp项目进行编译,生成./main(用于推理)和./quantize(用于量化)二进制文件

    bash 复制代码
    cd 解压缩项目路径
    make

Step 3: 生成量化版本模型

  1. 创建目录并拷贝模型到项目目录:zh-models/7B/

  2. 将Chinese-LLaMA-Alpaca-2模型转换为gguf模型

    bash 复制代码
    #根目录
    python convert.py zh-models/7B/
  3. 将生成的fp16格式的gguf模型进行4-bit量化

    bash 复制代码
    ./quantize ./zh-models/7B/ggml-model-f16.gguf ./zh-models/7B/ggml-model-q4_0.gguf q4_0

Step 4: 加载并启动模型

到这一步其实可以用llama.cpp的加载模型方式对话了

但我用的虚拟机,性能有限,故而使用Text generation web UI 加载模型,具体如何加载建议看原文档和项目说明


windows部署Text generation web UI 环境

原项目:https://github.com/oobabooga/text-generation-webui

Step 1: 下载安装Miniconda3_py310

链接:https://repo.anaconda.com/miniconda/Miniconda3-py310_23.3.1-0-Windows-x86_64.exe

Step 2: 克隆项目到本地

bash 复制代码
git clone  https://github.com/oobabooga/text-generation-webui

Step 3: 打开Miniconda3命令行,建立新conda环境

bash 复制代码
conda create -n textgen

Step 4: 下载安装相关的python各类环境库

有github链接的必须手动下载whl,再pip安装whl的绝对位置

bash 复制代码
conda activate textgen
cd 项目位置
pip install env/bitsandbytes-0.41.1-py3-none-win_amd64.whl
pip install E:\AI\环境第三方库\auto_gptq-0.4.2+cu117-cp310-cp310-win_amd64.whl

https://github.com/jllllll/exllama/releases/download/0.0.17/exllama-0.0.17+cu117-cp310-cp310-win_amd64.whl
pip install E:\AI\环境第三方库\exllama-0.0.17+cu117-cp310-cp310-win_amd64.whl

pip install llama-cpp-python==0.1.84

https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.1.84+cu117-cp310-cp310-win_amd64.whl
pip install E:\AI\环境第三方库\llama_cpp_python_cuda-0.1.84+cu117-cp310-cp310-win_amd64.whl

https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.0/gptq_for_llama-0.1.0+cu117-cp310-cp310-win_amd64.whl
pip install E:\AI\环境第三方库\gptq_for_llama-0.1.0+cu117-cp310-cp310-win_amd64.whl

https://github.com/jllllll/ctransformers-cuBLAS-wheels/releases/download/AVX2/ctransformers-0.2.25+cu117-py3-none-any.whl
pip install E:\AI\环境第三方库\ctransformers-0.2.25+cu117-py3-none-any.whl

pip install -r requirements.txt -i 换源

Step 5: 启动web服务

bash 复制代码
conda activate textgen
cd E:/AI/项目/text-generation-webui-main
python server.py

使用Text generation web UI 加载模型并进行对话

  1. 打开生成的url网址
  2. 加载本地模型
  3. 对话即可
相关推荐
量子位2 天前
GPT-5编程专用版发布!独立连续编程7小时,简单任务提速10倍,VS Code就能用
gpt·chatgpt
coder_pig2 天前
🤔 试试 OpenAI 的最强编程模型 "GPT-5-Codex"?
chatgpt·openai·claude
齐杰拉3 天前
源码精读:拆解 ChatGPT 打字机效果背后的数据流水线
前端·chatgpt
mit6.8244 天前
[code-review] 日志机制 | `LOG_LEVEL`
人工智能·chatgpt·代码复审
Orange_sparkle4 天前
解决Dify中接入xinference模型无法开关思考模式和使用function calling的问题
人工智能·深度学习·语言模型·chatgpt
gptplus4 天前
【重要通知】ChatGPT Plus将于9月16日调整全球充值定价,低价区将被弃用,开发者如何应对?
人工智能·gpt·chatgpt
跨境小新4 天前
ChatGPT大模型训练指南:如何借助动态代理IP提高训练效率
网络协议·tcp/ip·chatgpt
sinat_286945194 天前
Case-Based Reasoning用于RAG
人工智能·算法·chatgpt
陈敬雷-充电了么-CEO兼CTO4 天前
突破多模态极限!InstructBLIP携指令微调革新视觉语言模型,X-InstructBLIP实现跨模态推理新高度
人工智能·自然语言处理·chatgpt·blip·clip·多模态大模型·gpt-5
007tg5 天前
从ChatGPT家长控制功能看AI合规与技术应对策略
人工智能·chatgpt·企业数据安全