sklearn包中对于分类问题,如何计算accuracy和roc_auc_score?

1. 基础条件

python 复制代码
import numpy as np
from sklearn import metrics

y_true = np.array([1, 7, 4, 6, 3])
y_prediction = np.array([3, 7, 4, 6, 3])

2. accuracy_score计算

python 复制代码
acc = metrics.accuracy_score(y_true, y_prediction)

这个没问题

3. roc_auc_score计算

The binary and multiclass cases expect labels with shape (n_samples,) while the multilabel case expects binary label indicators with shape (n_samples, n_classes).

因此metrics.roc_auc_score对于multiclasses类的roc_auc_score计算,需要一个二维array,每一列是表示分的每一类,每一行是表示是否为此类。

python 复制代码
from sklearn.preprocessing import OneHotEncoder
enc = OneHotEncoder(sparse=False)
enc.fit(y_true.reshape(-1, 1))
y_true_onehot = enc.transform(y_true.reshape(-1, 1))
y_predictions_onehot = \
    enc.transform(y_prediction.reshape(-1, 1))
bash 复制代码
In [201]: y_true_onehot
Out[201]: 
array([[1., 0., 0., 0., 0.],
       [0., 0., 0., 0., 1.],
       [0., 0., 1., 0., 0.],
       [0., 0., 0., 1., 0.],
       [0., 1., 0., 0., 0.]])

In [202]: y_predictions_onehot
Out[202]: 
array([[0., 1., 0., 0., 0.],
       [0., 0., 0., 0., 1.],
       [0., 0., 1., 0., 0.],
       [0., 0., 0., 1., 0.],
       [0., 1., 0., 0., 0.]])
bash 复制代码
In [204]: enc.categories_
Out[204]: [array([1, 3, 4, 6, 7])]

所以结合enc.categories_y_true_onehoty_truey_true_onehot的对应关系如下:

Class 1 3 4 6 7
true value: 1 1
true value: 7 1
true value: 4 1
true value: 6 1
true value: 3 1

因此,对于y_predictiony_prediction_onehot的对应关系就是如下:

Class 1 3 4 6 7
Prediction value: 3 1
Prediction value: 7 1
Prediction value: 4 1
Prediction value: 6 1
Prediction value: 3 1

这就解释了上述y_true_onehoty_prediction_onehot的返回结果。

python 复制代码
ensemble_auc = metrics.roc_auc_score(y_true_onehot,
                                     y_predictions_onehot)
bash 复制代码
In [200]: ensemble_auc
Out[200]: 0.875
相关推荐
qq_273900233 分钟前
Pytorch torch.nn.utils.rnn.pad_sequence 介绍
人工智能·pytorch·python·rnn·深度学习
大模型真好玩11 分钟前
点名DeepSeek?一文解析”最强大模型“Llama-4到底是王者归来 还是 困兽犹斗?
人工智能·llama·deepseek
shengjk115 分钟前
快速搞懂湖仓一体发展历程:错过它,你将失去下一个大数据风口!
人工智能·后端
拉丁解牛说技术23 分钟前
一句话让deepseek实现基于Spring AI的AI chatbot
人工智能·spring·程序员
在下小航27 分钟前
前端本地大模型 window.ai 最新教程
前端·人工智能
蹦蹦跳跳真可爱58935 分钟前
Python----PaddlePaddle(深度学习框架PaddlePaddle,概述,安装,衍生工具)
开发语言·人工智能·python·paddlepaddle
机器之心41 分钟前
迈向机器人领域ImageNet,大牛Pieter Abbeel领衔国内外高校共建RoboVerse,统一仿真平台、数据集和基准
人工智能
cccccc语言我来了1 小时前
飞浆PaddlePaddle 猫狗数据大战
人工智能·python·paddlepaddle
机器之心1 小时前
Llama 4在测试集上训练?内部员工、官方下场澄清,LeCun转发
人工智能
机器之心1 小时前
首次引入强化学习!火山引擎Q-Insight让画质理解迈向深度思考
人工智能