7.1、如何理解Flink中的时间语义

目录

1、如何理解Flink中的时间语义

2、实时计算时,应该如何选择时间语义?

3、时间语义与窗口的关系


1、如何理解Flink中的时间语义

flink作为流式计算引擎,提供了 两种时间语义 来对流式数据进行计算

事件时间(EventTime) : 事件产生的时间,通常由事件中的时间戳描述

处理时间(ProcessingTime) : 数据据被处理的时间,即服务器的当前系统时间


2、实时计算时,应该如何选择时间语义?

事件时间(EventTime)

优点: 保证了计算结果的正确性(无论什么时候执行)

缺点: 数据结果的实时性受 数据延迟的影响

处理时间(ProcessingTime)

优点:计算实时性高,不受数据延迟的影响

缺点:无法保证计算结果的正确性(无法重跑数据)


3、时间语义与窗口的关系

时间语义决定着数据会被分配到哪个窗口中去

相关推荐
广州腾科助你拿下华为认证3 分钟前
华为考试:HCIE数通考试难度分析
大数据·华为
在未来等你2 小时前
Elasticsearch面试精讲 Day 17:查询性能调优实践
大数据·分布式·elasticsearch·搜索引擎·面试
大数据CLUB5 小时前
基于spark的澳洲光伏发电站选址预测
大数据·hadoop·分布式·数据分析·spark·数据开发
ratbag6720136 小时前
当环保遇上大数据:生态环境大数据技术专业的课程侧重哪些领域?
大数据
计算机编程小央姐7 小时前
跟上大数据时代步伐:食物营养数据可视化分析系统技术前沿解析
大数据·hadoop·信息可视化·spark·django·课程设计·食物
智数研析社8 小时前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
潘达斯奈基~8 小时前
《大数据之路1》笔记2:数据模型
大数据·笔记
寻星探路8 小时前
数据库造神计划第六天---增删改查(CRUD)(2)
java·大数据·数据库
翰林小院10 小时前
【大数据专栏】流式处理框架-Apache Fink
大数据·flink
孟意昶11 小时前
Spark专题-第一部分:Spark 核心概述(2)-Spark 应用核心组件剖析
大数据·spark·big data