OpenCV自学笔记二十三:K近邻算法

**K近邻算法(K-Nearest Neighbors,简称KNN)是一种常用的监督学习算法,可以用于分类和回归问题。**在OpenCV中,KNN算法有相应的函数实现,主要包含在ml模块中。

KNN算法的原理很简单,它基于样本之间的距离来进行分类或回归。对于分类问题,KNN算法将未知样本与训练集中的样本逐个比较距离,并选择距离最近的K个邻居样本,根据这K个邻居样本的标签进行投票,将未知样本归类为票数最多的标签。对于回归问题,KNN算法将未知样本与训练集中的样本逐个比较距离,并选择距离最近的K个邻居样本,然后取这K个邻居样本的平均值作为未知样本的预测值。

在OpenCV中,KNN算法的函数为`cv.ml.KNearest_create()`。下面是一个使用KNN算法进行分类的示例代码:

复制代码
import cv2 as cv

import numpy as np

# 创建KNN对象

knn = cv.ml.KNearest_create()

# 准备训练数据

trainData = np.array([[1, 1], [1, 3], [2, 2], [2, 4]], dtype=np.float32)

responses = np.array([0, 0, 1, 1], dtype=np.float32)

# 训练KNN模型

knn.train(trainData, cv.ml.ROW_SAMPLE, responses)

# 准备测试数据

testData = np.array([[3, 1]], dtype=np.float32)

# 使用KNN分类

_, results, _, _ = knn.findNearest(testData, 1)

print("结果:", results)

在上述示例中,我们首先创建了一个KNN对象。然后,准备训练数据`trainData`和对应的标签`responses`。接下来,使用`train()`函数对KNN模型进行训练。最后,准备测试数据`testData`,并使用`findNearest()`函数进行分类预测,其中参数1表示选择距离最近的1个邻居样本。

运行以上代码,将输出结果为`结果: [[0.]]`,表示测试数据被分类为标签0。

除了分类问题,KNN算法还可以用于回归问题。回归问题与分类问题类似,只是需要使用`cv.ml.KNearest_create()`创建的KNN对象设置`cv.ml.KNearest_REGRESSOR`标志,并且使用`findNearest()`函数的返回值来得到预测的连续值。

相关推荐
jndingxin36 分钟前
OpenCV CUDA模块图像变形------对图像进行 尺寸缩放(Resize)操作函数resize()
人工智能·opencv·计算机视觉
luofeiju39 分钟前
数字图像处理与OpenCV初探
c++·图像处理·python·opencv·计算机视觉
清醒的兰39 分钟前
OpenCV 多边形绘制与填充
图像处理·人工智能·opencv·计算机视觉
whoarethenext39 分钟前
使用 C/C++的OpenCV 将多张图片合成为视频
c语言·c++·opencv
luozhonghua200041 分钟前
opencv opencv_contrib vs2020 源码安装
人工智能·opencv·计算机视觉
吴声子夜歌41 分钟前
OpenCV——图像金字塔
人工智能·opencv·计算机视觉
吴声子夜歌42 分钟前
OpenCV——图像基本操作(三)
人工智能·opencv·计算机视觉
snowful world1 小时前
PolyU Palmprint Database掌纹识别数据集预处理(踩坑版)
数据库·人工智能·opencv
万变不离其宗_82 小时前
echarts使用笔记
前端·笔记·echarts
jndingxin3 小时前
OpenCV CUDA模块图像变形------对图像进行任意形式的重映射(Remapping)操作函数remap()
人工智能·opencv·计算机视觉