OpenCV自学笔记二十三:K近邻算法

**K近邻算法(K-Nearest Neighbors,简称KNN)是一种常用的监督学习算法,可以用于分类和回归问题。**在OpenCV中,KNN算法有相应的函数实现,主要包含在ml模块中。

KNN算法的原理很简单,它基于样本之间的距离来进行分类或回归。对于分类问题,KNN算法将未知样本与训练集中的样本逐个比较距离,并选择距离最近的K个邻居样本,根据这K个邻居样本的标签进行投票,将未知样本归类为票数最多的标签。对于回归问题,KNN算法将未知样本与训练集中的样本逐个比较距离,并选择距离最近的K个邻居样本,然后取这K个邻居样本的平均值作为未知样本的预测值。

在OpenCV中,KNN算法的函数为`cv.ml.KNearest_create()`。下面是一个使用KNN算法进行分类的示例代码:

复制代码
import cv2 as cv

import numpy as np

# 创建KNN对象

knn = cv.ml.KNearest_create()

# 准备训练数据

trainData = np.array([[1, 1], [1, 3], [2, 2], [2, 4]], dtype=np.float32)

responses = np.array([0, 0, 1, 1], dtype=np.float32)

# 训练KNN模型

knn.train(trainData, cv.ml.ROW_SAMPLE, responses)

# 准备测试数据

testData = np.array([[3, 1]], dtype=np.float32)

# 使用KNN分类

_, results, _, _ = knn.findNearest(testData, 1)

print("结果:", results)

在上述示例中,我们首先创建了一个KNN对象。然后,准备训练数据`trainData`和对应的标签`responses`。接下来,使用`train()`函数对KNN模型进行训练。最后,准备测试数据`testData`,并使用`findNearest()`函数进行分类预测,其中参数1表示选择距离最近的1个邻居样本。

运行以上代码,将输出结果为`结果: [[0.]]`,表示测试数据被分类为标签0。

除了分类问题,KNN算法还可以用于回归问题。回归问题与分类问题类似,只是需要使用`cv.ml.KNearest_create()`创建的KNN对象设置`cv.ml.KNearest_REGRESSOR`标志,并且使用`findNearest()`函数的返回值来得到预测的连续值。

相关推荐
山岚的运维笔记1 小时前
SQL Server笔记 -- 第50章 存储过程
数据库·笔记·sql·microsoft·oracle·sqlserver
寒秋花开曾相惜1 小时前
(学习笔记)2.1 信息存储(2.1.1 十六进制表示法)
笔记·学习
神明不懂浪漫2 小时前
【第十三章】操作符详解,预处理指令详解
c语言·开发语言·经验分享·笔记
此刻觐神2 小时前
Windows学习笔记-18(MFC项目-制作快捷方式管理工具)
windows·笔记·学习·mfc
格林威3 小时前
Baumer相机橡胶O型圈直径测量:用于密封件入库检验的 6 个关键技术,附 OpenCV+Halcon 实战代码!
人工智能·opencv·计算机视觉·视觉检测·工业相机·智能相机·堡盟相机
格林威3 小时前
Baumer相机印刷标签二维码可读性评估:优化打码工艺的 7 个实用技巧,附 OpenCV+Halcon 实战代码!
人工智能·opencv·计算机视觉·视觉检测·工业相机·智能相机·堡盟相机
FakeOccupational3 小时前
【电路笔记 元器件】存储设备:RAM 静态随机存取存储器(SRAM)芯片+异步 SRAM 的特性+异步 SRAM读写测试(HDL)
笔记·fpga开发
Alice_whj3 小时前
AI云原生笔记
人工智能·笔记·云原生
Lyan-X3 小时前
鲁鹏教授《计算机视觉与深度学习》课程笔记与思考 ——13. 生成模型 VAE:从无监督学习到显式密度估计的建模与实现
人工智能·笔记·深度学习·计算机视觉
马猴烧酒.4 小时前
【面试八股|Mysql篇】Mysql常见面试题详解笔记
笔记·mysql·面试