分类预测 | Matlab实现GA-RF遗传算法优化随机森林多输入分类预测

分类预测 | Matlab实现GA-RF遗传算法优化随机森林多输入分类预测

目录

效果一览




基本介绍

Matlab实现GA-RF遗传算法优化随机森林多输入分类预测(完整源码和数据)

Matlab实现GA-RF遗传算法优化随机森林分类预测,多输入单输出模型。GA-RF分类预测模型

多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,混淆矩阵图。优化随机森林树木棵树何深度。

程序设计

clike 复制代码
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  清空环境变量
clc;
clear;
warning off
close all
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  添加路径
addpath("Toolbox\")
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  读取数据
res = xlsread('数据集.xlsx');
%%  性能评价
error1 = sum((T_sim1' == T_train)) / M * 100 ;
error2 = sum((T_sim2' == T_test )) / N * 100 ;
%-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
grid

figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
grid
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  混淆矩阵
if flag_conusion == 1

    figure
    cm = confusionchart(T_train, T_sim1);
    cm.Title = 'Confusion Matrix for Train Data';
    cm.ColumnSummary = 'column-normalized';
    cm.RowSummary = 'row-normalized';
    
    figure
    cm = confusionchart(T_test, T_sim2);
    cm.Title = 'Confusion Matrix for Test Data';
    cm.ColumnSummary = 'column-normalized';
    cm.RowSummary = 'row-normalized';
end

参考资料

1\] https://download.csdn.net/download/kjm13182345320/87899283?spm=1001.2014.3001.5503 \[2\] https://download.csdn.net/download/kjm13182345320/87899230?spm=1001.2014.3001.5503

相关推荐
摸鱼仙人~13 天前
使用随机森林实现目标检测
随机森林
no_work15 天前
基于python机器学习来预测含MLP决策树LGBM随机森林XGBoost等
人工智能·python·决策树·随机森林·机器学习
机器学习之心17 天前
光伏功率预测 | RF随机森林多变量单步光伏功率预测(Matlab完整源码和数据)
算法·随机森林·matlab·多变量单步光伏功率预测
愿所愿皆可成21 天前
机器学习之集成学习
人工智能·随机森林·机器学习·集成学习
殇者知忧25 天前
【论文笔记】若干矿井粉尘检测算法概述
深度学习·神经网络·算法·随机森林·机器学习·支持向量机·计算机视觉
MYH5161 个月前
汽车停车匹配充电桩随机森林
python·随机森林·汽车
my_q1 个月前
机器学习与深度学习08-随机森林02
深度学习·随机森林·机器学习
宋一诺331 个月前
机器学习——随机森林算法
算法·随机森林·机器学习
白熊1881 个月前
【机器学习基础】机器学习入门核心算法:随机森林(Random Forest)
算法·随机森林·机器学习
Hao想睡觉1 个月前
机器学习之随机森林(五)
人工智能·随机森林·机器学习