分类预测 | Matlab实现GA-RF遗传算法优化随机森林多输入分类预测

分类预测 | Matlab实现GA-RF遗传算法优化随机森林多输入分类预测

目录

效果一览




基本介绍

Matlab实现GA-RF遗传算法优化随机森林多输入分类预测(完整源码和数据)

Matlab实现GA-RF遗传算法优化随机森林分类预测,多输入单输出模型。GA-RF分类预测模型

多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,混淆矩阵图。优化随机森林树木棵树何深度。

程序设计

clike 复制代码
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  清空环境变量
clc;
clear;
warning off
close all
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  添加路径
addpath("Toolbox\")
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  读取数据
res = xlsread('数据集.xlsx');
%%  性能评价
error1 = sum((T_sim1' == T_train)) / M * 100 ;
error2 = sum((T_sim2' == T_test )) / N * 100 ;
%-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
grid

figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
grid
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  混淆矩阵
if flag_conusion == 1

    figure
    cm = confusionchart(T_train, T_sim1);
    cm.Title = 'Confusion Matrix for Train Data';
    cm.ColumnSummary = 'column-normalized';
    cm.RowSummary = 'row-normalized';
    
    figure
    cm = confusionchart(T_test, T_sim2);
    cm.Title = 'Confusion Matrix for Test Data';
    cm.ColumnSummary = 'column-normalized';
    cm.RowSummary = 'row-normalized';
end

参考资料

1\] https://download.csdn.net/download/kjm13182345320/87899283?spm=1001.2014.3001.5503 \[2\] https://download.csdn.net/download/kjm13182345320/87899230?spm=1001.2014.3001.5503

相关推荐
爱吃rabbit的mq1 天前
第09章:随机森林:集成学习的威力
算法·随机森林·集成学习
机器学习之心1 天前
基于随机森林模型的轴承剩余寿命预测MATLAB实现!
算法·随机森林·matlab
eWidget1 天前
随机森林原理:集成学习思想 —— Java 实现多棵决策树投票机制
java·数据库·随机森林·集成学习·金仓数据库
WHD3061 天前
苏州误删除 格式化 服务器文件 恢复
随机森林·支持向量机·深度优先·爬山算法·宽度优先·推荐算法·最小二乘法
开开心心就好5 天前
键盘改键工具免安装,自定义键位屏蔽误触
java·网络·windows·随机森林·计算机外设·电脑·excel
散峰而望6 天前
【基础算法】穷举的艺术:在可能性森林中寻找答案
开发语言·数据结构·c++·算法·随机森林·github·动态规划
uesowys6 天前
Apache Spark算法开发指导-Random forest classifier
算法·随机森林·spark
week_泽11 天前
随机森林样本权重的计算-弱学习器
学习·算法·随机森林
开开心心_Every12 天前
A3试卷分割工具:免费转为A4格式可离线
游戏·随机森林·微信·pdf·excel·语音识别·最小二乘法
开开心心_Every15 天前
时间自动校准工具:一键同步网络服务器时间
游戏·随机森林·微信·pdf·逻辑回归·excel·语音识别