分类预测 | Matlab实现GA-RF遗传算法优化随机森林多输入分类预测

分类预测 | Matlab实现GA-RF遗传算法优化随机森林多输入分类预测

目录

效果一览




基本介绍

Matlab实现GA-RF遗传算法优化随机森林多输入分类预测(完整源码和数据)

Matlab实现GA-RF遗传算法优化随机森林分类预测,多输入单输出模型。GA-RF分类预测模型

多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,混淆矩阵图。优化随机森林树木棵树何深度。

程序设计

clike 复制代码
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  清空环境变量
clc;
clear;
warning off
close all
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  添加路径
addpath("Toolbox\")
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  读取数据
res = xlsread('数据集.xlsx');
%%  性能评价
error1 = sum((T_sim1' == T_train)) / M * 100 ;
error2 = sum((T_sim2' == T_test )) / N * 100 ;
%-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
grid

figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
grid
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  混淆矩阵
if flag_conusion == 1

    figure
    cm = confusionchart(T_train, T_sim1);
    cm.Title = 'Confusion Matrix for Train Data';
    cm.ColumnSummary = 'column-normalized';
    cm.RowSummary = 'row-normalized';
    
    figure
    cm = confusionchart(T_test, T_sim2);
    cm.Title = 'Confusion Matrix for Test Data';
    cm.ColumnSummary = 'column-normalized';
    cm.RowSummary = 'row-normalized';
end

参考资料

1\] https://download.csdn.net/download/kjm13182345320/87899283?spm=1001.2014.3001.5503 \[2\] https://download.csdn.net/download/kjm13182345320/87899230?spm=1001.2014.3001.5503

相关推荐
烟锁池塘柳02 天前
【数学建模】随机森林算法详解:原理、优缺点及应用
算法·随机森林·数学建模
AI大模型团团7 天前
从基础概念到前沿应用了解机器学习
人工智能·python·随机森林·机器学习·ai·线性回归·llama
小森77679 天前
(五)机器学习---决策树和随机森林
算法·决策树·随机森林·机器学习·分类算法
码媛11 天前
A002-随机森林模型实现糖尿病预测
算法·随机森林·机器学习
拓端研究室TRL13 天前
Python对Airbnb北京与上海链家租房数据用逻辑回归、决策树、岭回归、Lasso、随机森林、XGBoost、神经网络、聚类
python·决策树·随机森林·回归·逻辑回归
zhglhy14 天前
随机森林与决策树
算法·决策树·随机森林
啥都鼓捣的小yao16 天前
Python手写“随机森林”解决鸢尾花数据集分类问题
人工智能·python·算法·随机森林·机器学习·分类
十七算法实验室17 天前
Matlab实现鼠群优化算法优化随机森林算法模型 (ROS-RF)(附源码)
开发语言·算法·决策树·随机森林·机器学习·支持向量机·matlab
Suc_zhan25 天前
实验二 如何将随机森林算法应用于激酶抑制剂分类任务
python·算法·随机森林·机器学习
数科星球1 个月前
进军场景智能体,云迹机器人又快了一步
随机森林·逻辑回归·散列表·启发式算法·模拟退火算法