论文阅读:AugGAN: Cross Domain Adaptation with GAN-based Data Augmentation

Abstract

  • 基于GAN的图像转换方法存在两个缺陷:保留图像目标保持图像转换前后的一致性,这导致不能用它生成大量不同域的训练数据。
  • 论文提出了一种结构感知 (Structure-aware)的图像转换网络(image-to-image translation network)。

Proposed Framework

  • 为了将图像正确地转换,我们需要编码信息包含:1)相互风格信息 (Mutual style)2)结构信息
  • 在我们同时优化图像转化和语义分割的假设下,通过我们的参数共享策略,语义分割子任务作为图像转化的辅助正则化。
  • 框架具体过程可以参考上面的图示。

结构感知编码和分割子任务

  • 文章认为通过训练分割子任务,可以将图像的结构化信息学习出来。

多任务网络的权重共享

  • 生成器解析网络 之间共享权值,允许生成器充分利用上下文感知的特征向量。
  • 我们计算了两个网络反卷积层之间的差异,并以零矩阵为目标,通过均方误差将差建模为损失函数。给出了软分权损失函数的数学表达式:

循环一致性

  • 循环一致性损失已被证明在防止网络在目标域内生成随机图像方面是相当有效的。

对抗性学习

  • 网络包括两个生成对抗网络:

实验

Synthetic Datasets

Reality Datasets

  • 从实验结果来看效果并不够好,但是这种学习方法还是值得借鉴的。

Reference

1\] Huang S W, Lin C T, Chen S P, et al. Auggan: Cross domain adaptation with gan-based data augmentation\[C\]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 718-731.

相关推荐
Shawn_Shawn4 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
33三 三like6 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a6 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者7 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗7 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
Coder_Boy_7 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信8 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_836235868 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
DuHz8 小时前
超宽带脉冲无线电(Ultra Wideband Impulse Radio, UWB)简介
论文阅读·算法·汽车·信息与通信·信号处理