论文阅读:AugGAN: Cross Domain Adaptation with GAN-based Data Augmentation

Abstract

  • 基于GAN的图像转换方法存在两个缺陷:保留图像目标保持图像转换前后的一致性,这导致不能用它生成大量不同域的训练数据。
  • 论文提出了一种结构感知 (Structure-aware)的图像转换网络(image-to-image translation network)。

Proposed Framework

  • 为了将图像正确地转换,我们需要编码信息包含:1)相互风格信息 (Mutual style)2)结构信息
  • 在我们同时优化图像转化和语义分割的假设下,通过我们的参数共享策略,语义分割子任务作为图像转化的辅助正则化。
  • 框架具体过程可以参考上面的图示。

结构感知编码和分割子任务

  • 文章认为通过训练分割子任务,可以将图像的结构化信息学习出来。

多任务网络的权重共享

  • 生成器解析网络 之间共享权值,允许生成器充分利用上下文感知的特征向量。
  • 我们计算了两个网络反卷积层之间的差异,并以零矩阵为目标,通过均方误差将差建模为损失函数。给出了软分权损失函数的数学表达式:

循环一致性

  • 循环一致性损失已被证明在防止网络在目标域内生成随机图像方面是相当有效的。

对抗性学习

  • 网络包括两个生成对抗网络:

实验

Synthetic Datasets

Reality Datasets

  • 从实验结果来看效果并不够好,但是这种学习方法还是值得借鉴的。

Reference

1\] Huang S W, Lin C T, Chen S P, et al. Auggan: Cross domain adaptation with gan-based data augmentation\[C\]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 718-731.

相关推荐
L***一5 分钟前
大数据与财务管理专业就业方向与职业发展路径探析——基于数字化时代复合型人才需求视角
人工智能
Testopia7 分钟前
AI编程实例 -- 数据可视化实战教程
人工智能·信息可视化·ai编程
跨境摸鱼12 分钟前
选品别只看“需求”,更要看“供给”:亚马逊新思路——用“供给断层”挑出更好打的品
大数据·人工智能·跨境电商·亚马逊·跨境·营销策略
XX風15 分钟前
5.1 deep learning introduction
人工智能·深度学习
m0_5648768415 分钟前
分布式训练DP与DDP
人工智能·深度学习·算法
汪碧康18 分钟前
OpenClaw 原版和汉化版windows 和Linux 下的部署实践
linux·人工智能·windows·agent·clawdbot·moltbot·openclaw
川西胖墩墩19 分钟前
文生视频AI工具深度评测:2024年主流视频生成模型的技术对比与创作指南
人工智能·数据挖掘·音视频
科技圈快讯20 分钟前
智能体工厂引领工业跃迁:美云智数全域AI重构研产供销价值链
人工智能·重构
lrh12280029 分钟前
详解逻辑回归算法:分类任务核心原理、损失函数与评估方法
人工智能·分类·数据挖掘
StarRocks_labs31 分钟前
不止于极速查询!StarRocks 2025 年度回顾:深耕 Lakehouse,加速 AI 融合
starrocks·人工智能·物化视图·lakehouse·湖仓架构