R语言实现竞争风险模型(1)

复制代码
#竞争风险模型
tmp <- data.frame(gene = tiaoxuan[,5:6],
                  OS.Time = Train[,"Survival_months"], 
                  OS = Train[,"CSS"],
                  stringsAsFactors = F) 
colnames(tmp)
#方法1:riskregression
library(riskRegression)
fgr1<-FGR(Hist(OS.Time,OS)~gene.Cancer_directed_surgery+gene.Systemic_therapy,data = tmp,cause = 1)

#方法2:cmprsk
library(cmprsk)
help(package="cmprsk")
CIF <- cuminc(ftime = tmp$OS.Time, fstatus =tmp$OS, group = tmp$gene.Cancer_directed_surgery, cencode = 0)
CIF
vars <- tmp[, c("gene.Cancer_directed_surgery","gene.Systemic_therapy")] %>% sapply(.,as.numeric)
str(tmp)
fit <- crr(ftime=tmp$OS.Time, fstatus=tmp$OS, vars,failcode=1,cencode = 0) ##拟合模型
summary(fit)

#mstate:构建列线图
#方法1
library(mstate)
tmp$id<-1:1193
df.w <- crprep("OS.Time", "OS",
               data=tmp, trans=c(1,2),
               id="id",
               cens=0,keep=c("gene.Cancer_directed_surgery","gene.Systemic_therapy"))
df.w$Time<- df.w$Tstop - df.w$Tstart
cox <- coxph(Surv(Time,status==1)~ gene.Cancer_directed_surgery+gene.Systemic_therapy, data=df.w[df.w$failcode==1,],
           weight=weight.cens,
           subset=failcode==1) 
cox
library(regplot)
regplot(cox)
#方法2
#install.packages("QHScrnomo")
library(QHScrnomo)
help(package="QHScrnomo")
dd <- datadist(tmp)
options(datadist = "dd")
prostate.f <- cph(Surv(OS.Time,OS == 1) ~ gene.Cancer_directed_surgery+gene.Systemic_therapy,
                  data = tmp,
                  x = TRUE, y= TRUE, surv=TRUE,time.inc = 12)
prostate.crr <- crr.fit(prostate.f,cencode = 0,failcode = 1)
## make a CRR nomogram
nomogram.crr(prostate.crr,failtime = 12,lp=FALSE,
             funlabel = "Predicted 1-year cumulative incidence")

值得注意的是,使用crprep构建模型的系数与上述两种方法相近但是不一致,知道原因的同志欢迎在评论区留言。

相关推荐
AI纪元故事会12 小时前
《目标检测全解析:从R-CNN到DETR,六大经典模型深度对比与实战指南》
人工智能·yolo·目标检测·r语言·cnn
小八四爱吃甜食2 天前
【R语言】构建GO、KEGG相关不同物种的R包
开发语言·golang·r语言
梦想的初衷~2 天前
生命周期评价(LCA):理论、方法与工具、典型案例全解析
r语言·农业·林业·环境科学·地理·气候变化·生命周期评价
asyxchenchong8883 天前
OpenLCA、GREET、R语言的生命周期评价方法、模型构建
开发语言·r语言
没有梦想的咸鱼185-1037-16633 天前
【生命周期评价(LCA)】基于OpenLCA、GREET、R语言的生命周期评价方法、模型构建
开发语言·数据分析·r语言
zhangfeng11334 天前
亲测有效的mem 流行病预测,时间序列预测,r语言做移动流行区间法,MEM流行病阈值设置指南
开发语言·r语言·生物信息
普通网友5 天前
Golang笔记——Interface类型
r语言
maizeman1266 天前
用R语言生成指定品种与对照的一元回归直线(含置信区间)
开发语言·回归·r语言·置信区间·品种测试
兮兮能吃能睡6 天前
R语言模型分析(一)(1)
开发语言·r语言
Tiger Z7 天前
《R for Data Science (2e)》免费中文翻译 (第11章) --- Communication(2)
r语言·数据科学·中文翻译