深度学习笔记_1、定义神经网络

1、 使用了PyTorch的nn.Module类来定义神经网络模型;使用nn.Linear来创建全连接层。(CPU)

import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary

# 定义神经网络模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(in_features=250, out_features=100, bias=True)  # 输入层到隐藏层1,具有250个输入特征和100个神经元
        self.fc2 = nn.Linear(100, 50)  # 隐藏层2,具有100到50个神经元
        self.fc3 = nn.Linear(50, 25)   # 隐藏层3,具有50到25个神经元
        self.fc4 = nn.Linear(25, 10)   # 隐藏层4,具有25到10个神经元
        self.fc5 = nn.Linear(10, 2)    # 输出层,具有10到2个神经元,用于二分类任务

    # 前向传播函数
    def forward(self, x):
        x = x.view(-1, 250)  # 将输入数据展平成一维张量
        x = F.relu(self.fc1(x))  # 使用ReLU激活函数传递到隐藏层1
        x = F.relu(self.fc2(x))  # 使用ReLU激活函数传递到隐藏层2
        x = F.relu(self.fc3(x))  # 使用ReLU激活函数传递到隐藏层3
        x = F.relu(self.fc4(x))  # 使用ReLU激活函数传递到隐藏层4
        x = self.fc5(x)         # 输出层,没有显式激活函数
        return x

if __name__ == '__main__':
    print(Net())
    model = Net()
    summary(model, (250,))  # 打印模型摘要信息,输入大小为(250,)

2、GPU版本

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(784, 100).to(device='cuda:0')
        self.fc2 = nn.Linear(100, 50).to(device='cuda:0')
        self.fc3 = nn.Linear(50, 25).to(device='cuda:0')
        self.fc4 = nn.Linear(25, 10).to(device='cuda:0')

    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.relu(self.fc3(x))
        x = F.relu(self.fc4(x))
        return x

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = Net().to(device)
input_data = torch.randn(784, 100).to(device)

summary(model, (784, ))
相关推荐
oneouto1 小时前
selenium学习笔记(二)
笔记·学习·selenium
学术头条1 小时前
清华、智谱团队:探索 RLHF 的 scaling laws
人工智能·深度学习·算法·机器学习·语言模型·计算语言学
sealaugh321 小时前
aws(学习笔记第十九课) 使用ECS和Fargate进行容器开发
笔记·学习·aws
18号房客1 小时前
一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·sklearn
Ven%2 小时前
如何在防火墙上指定ip访问服务器上任何端口呢
linux·服务器·网络·深度学习·tcp/ip
IT猿手2 小时前
最新高性能多目标优化算法:多目标麋鹿优化算法(MOEHO)求解TP1-TP10及工程应用---盘式制动器设计,提供完整MATLAB代码
开发语言·深度学习·算法·机器学习·matlab·多目标算法
强哥之神2 小时前
Nexa AI发布OmniAudio-2.6B:一款快速的音频语言模型,专为边缘部署设计
人工智能·深度学习·机器学习·语言模型·自然语言处理·音视频·openai
18号房客2 小时前
一个简单的深度学习模型例程,使用Keras(基于TensorFlow)构建一个卷积神经网络(CNN)来分类MNIST手写数字数据集。
人工智能·深度学习·机器学习·生成对抗网络·语言模型·自然语言处理·tensorflow
神秘的土鸡3 小时前
神经网络图像隐写术:用AI隐藏信息的艺术
人工智能·深度学习·神经网络
数据分析能量站3 小时前
神经网络-LeNet
人工智能·深度学习·神经网络·机器学习