深度学习笔记_1、定义神经网络

1、 使用了PyTorch的nn.Module类来定义神经网络模型;使用nn.Linear来创建全连接层。(CPU)

import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary

# 定义神经网络模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(in_features=250, out_features=100, bias=True)  # 输入层到隐藏层1,具有250个输入特征和100个神经元
        self.fc2 = nn.Linear(100, 50)  # 隐藏层2,具有100到50个神经元
        self.fc3 = nn.Linear(50, 25)   # 隐藏层3,具有50到25个神经元
        self.fc4 = nn.Linear(25, 10)   # 隐藏层4,具有25到10个神经元
        self.fc5 = nn.Linear(10, 2)    # 输出层,具有10到2个神经元,用于二分类任务

    # 前向传播函数
    def forward(self, x):
        x = x.view(-1, 250)  # 将输入数据展平成一维张量
        x = F.relu(self.fc1(x))  # 使用ReLU激活函数传递到隐藏层1
        x = F.relu(self.fc2(x))  # 使用ReLU激活函数传递到隐藏层2
        x = F.relu(self.fc3(x))  # 使用ReLU激活函数传递到隐藏层3
        x = F.relu(self.fc4(x))  # 使用ReLU激活函数传递到隐藏层4
        x = self.fc5(x)         # 输出层,没有显式激活函数
        return x

if __name__ == '__main__':
    print(Net())
    model = Net()
    summary(model, (250,))  # 打印模型摘要信息,输入大小为(250,)

2、GPU版本

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(784, 100).to(device='cuda:0')
        self.fc2 = nn.Linear(100, 50).to(device='cuda:0')
        self.fc3 = nn.Linear(50, 25).to(device='cuda:0')
        self.fc4 = nn.Linear(25, 10).to(device='cuda:0')

    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.relu(self.fc3(x))
        x = F.relu(self.fc4(x))
        return x

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = Net().to(device)
input_data = torch.randn(784, 100).to(device)

summary(model, (784, ))
相关推荐
丫头,冲鸭!!!2 分钟前
B树(B-Tree)和B+树(B+ Tree)
笔记·算法
听忆.21 分钟前
手机屏幕上进行OCR识别方案
笔记
Selina K1 小时前
shell脚本知识点记录
笔记·shell
1 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
Chef_Chen2 小时前
从0开始机器学习--Day17--神经网络反向传播作业
python·神经网络·机器学习
霍格沃兹测试开发学社测试人社区2 小时前
软件测试学习笔记丨Flask操作数据库-数据库和表的管理
软件测试·笔记·测试开发·学习·flask
幸运超级加倍~2 小时前
软件设计师-上午题-16 算法(4-5分)
笔记·算法
王俊山IT3 小时前
C++学习笔记----10、模块、头文件及各种主题(一)---- 模块(5)
开发语言·c++·笔记·学习
羊小猪~~3 小时前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
Yawesh_best4 小时前
思源笔记轻松连接本地Ollama大语言模型,开启AI写作新体验!
笔记·语言模型·ai写作