深度学习笔记_1、定义神经网络

1、 使用了PyTorch的nn.Module类来定义神经网络模型;使用nn.Linear来创建全连接层。(CPU)

复制代码
import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary

# 定义神经网络模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(in_features=250, out_features=100, bias=True)  # 输入层到隐藏层1,具有250个输入特征和100个神经元
        self.fc2 = nn.Linear(100, 50)  # 隐藏层2,具有100到50个神经元
        self.fc3 = nn.Linear(50, 25)   # 隐藏层3,具有50到25个神经元
        self.fc4 = nn.Linear(25, 10)   # 隐藏层4,具有25到10个神经元
        self.fc5 = nn.Linear(10, 2)    # 输出层,具有10到2个神经元,用于二分类任务

    # 前向传播函数
    def forward(self, x):
        x = x.view(-1, 250)  # 将输入数据展平成一维张量
        x = F.relu(self.fc1(x))  # 使用ReLU激活函数传递到隐藏层1
        x = F.relu(self.fc2(x))  # 使用ReLU激活函数传递到隐藏层2
        x = F.relu(self.fc3(x))  # 使用ReLU激活函数传递到隐藏层3
        x = F.relu(self.fc4(x))  # 使用ReLU激活函数传递到隐藏层4
        x = self.fc5(x)         # 输出层,没有显式激活函数
        return x

if __name__ == '__main__':
    print(Net())
    model = Net()
    summary(model, (250,))  # 打印模型摘要信息,输入大小为(250,)

2、GPU版本

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(784, 100).to(device='cuda:0')
        self.fc2 = nn.Linear(100, 50).to(device='cuda:0')
        self.fc3 = nn.Linear(50, 25).to(device='cuda:0')
        self.fc4 = nn.Linear(25, 10).to(device='cuda:0')

    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.relu(self.fc3(x))
        x = F.relu(self.fc4(x))
        return x

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = Net().to(device)
input_data = torch.randn(784, 100).to(device)

summary(model, (784, ))
相关推荐
许长安7 小时前
C/C++中的extern关键字详解
c语言·开发语言·c++·经验分享·笔记
qzhqbb7 小时前
神经网络 - 循环神经网络
人工智能·rnn·神经网络
li星野7 小时前
打工人日报#20251107
笔记
中杯可乐多加冰7 小时前
基于网易CodeWave智能开发平台构建宝可梦图鉴
深度学习·低代码·ai·数据分析·数据采集·无代码·网易codewave征文
YJlio7 小时前
PsSuspend(7.23):无损挂起与恢复指定进程——精准“冻住”故障现场
笔记·学习·安全
小白狮ww8 小时前
模型不再是一整块!Hunyuan3D-Part 实现可控组件式 3D 生成
人工智能·深度学习·机器学习·教程·3d模型·hunyuan3d·3d创作
高洁018 小时前
面向强化学习的状态空间建模:RSSM的介绍和PyTorch实现(3)
人工智能·python·深度学习·神经网络·transformer
卡提西亚9 小时前
一本通网站1122题:计算鞍点
c++·笔记·编程题·一本通
im_AMBER9 小时前
Leetcode 47
数据结构·c++·笔记·学习·算法·leetcode
apocalypsx9 小时前
深度学习-深度卷积神经网络AlexNet
人工智能·深度学习·cnn