深度学习笔记_1、定义神经网络

1、 使用了PyTorch的nn.Module类来定义神经网络模型;使用nn.Linear来创建全连接层。(CPU)

复制代码
import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary

# 定义神经网络模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(in_features=250, out_features=100, bias=True)  # 输入层到隐藏层1,具有250个输入特征和100个神经元
        self.fc2 = nn.Linear(100, 50)  # 隐藏层2,具有100到50个神经元
        self.fc3 = nn.Linear(50, 25)   # 隐藏层3,具有50到25个神经元
        self.fc4 = nn.Linear(25, 10)   # 隐藏层4,具有25到10个神经元
        self.fc5 = nn.Linear(10, 2)    # 输出层,具有10到2个神经元,用于二分类任务

    # 前向传播函数
    def forward(self, x):
        x = x.view(-1, 250)  # 将输入数据展平成一维张量
        x = F.relu(self.fc1(x))  # 使用ReLU激活函数传递到隐藏层1
        x = F.relu(self.fc2(x))  # 使用ReLU激活函数传递到隐藏层2
        x = F.relu(self.fc3(x))  # 使用ReLU激活函数传递到隐藏层3
        x = F.relu(self.fc4(x))  # 使用ReLU激活函数传递到隐藏层4
        x = self.fc5(x)         # 输出层,没有显式激活函数
        return x

if __name__ == '__main__':
    print(Net())
    model = Net()
    summary(model, (250,))  # 打印模型摘要信息,输入大小为(250,)

2、GPU版本

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(784, 100).to(device='cuda:0')
        self.fc2 = nn.Linear(100, 50).to(device='cuda:0')
        self.fc3 = nn.Linear(50, 25).to(device='cuda:0')
        self.fc4 = nn.Linear(25, 10).to(device='cuda:0')

    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.relu(self.fc3(x))
        x = F.relu(self.fc4(x))
        return x

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = Net().to(device)
input_data = torch.randn(784, 100).to(device)

summary(model, (784, ))
相关推荐
zm-v-1593043398618 分钟前
ArcGIS 水文分析升级:基于深度学习的流域洪水演进过程模拟
人工智能·深度学习·arcgis
KoiHeng1 小时前
操作系统简要知识
linux·笔记
SHIPKING3932 小时前
【机器学习&深度学习】什么是下游任务模型?
人工智能·深度学习·机器学习
巴伦是只猫2 小时前
【机器学习笔记Ⅰ】11 多项式回归
笔记·机器学习·回归
DKPT6 小时前
Java桥接模式实现方式与测试方法
java·笔记·学习·设计模式·桥接模式
巴伦是只猫8 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
伍哥的传说8 小时前
React 各颜色转换方法、颜色值换算工具HEX、RGB/RGBA、HSL/HSLA、HSV、CMYK
深度学习·神经网络·react.js
要努力啊啊啊9 小时前
YOLOv3-SPP Auto-Anchor 聚类调试指南!
人工智能·深度学习·yolo·目标检测·目标跟踪·数据挖掘
**梯度已爆炸**11 小时前
NLP文本预处理
人工智能·深度学习·nlp
汀沿河11 小时前
2 大模型高效参数微调;prompt tunning
人工智能·深度学习·prompt