2.物联网射频识别,RFID通信原理,RFID读写器与标签无线交互方式、数据反馈方式,RFID调制与解调、编码方式,不同RFID标签与读写器

一。RFID无线识别的原理

1.RFID系统无线通信基本原理

如下图所示,左边是读写器(刷卡器),右边是标签(卡),中间通过无线通信方式。

标签:(卡)

读写器:(刷卡机)

问题:无源RFID标签如何取电?即没有电源的卡如何取电?

无源RFID的天线接收从读卡器上传递过来的电磁场能并把能量转化为射频能,射频能通过建波变为电能。即电生磁,磁再生电。

2.读写器与标签之间的无线电波交互方式

补充:RFID按频段分类

我们可以看到工作原理是电感耦合,电磁反向散射耦合,这就是读写器与标签之间的电波交互。下面详细分析他。

<1>电感耦合

(1)使用的原理是线圈互感(高中时期学的两个线圈的电磁感应)。

(2)注意只能发生在近场,原因是电感耦合发生在低频。

<2>电磁反向散射耦合

(1)类比雷达,当电磁波遇到空间目标时,其能量的一部分被目标吸收,另一部分以不同的强度散射到各个方向。

(2)在散射的能量中,一小部分反射回发射天线,并被天线接收(因此发射天线也是接收天线),对接收信号进行放大和处理,即可获得目标的有关信息。

3.标签是如何将数据反馈给读写器的

<1>电感耦合中的负载调制

(1)接通和关断在电子标签天线线圈处的负载电阻Rmod,会造成读写器天线的电压变化,这将影响读写器天线上电压的幅度。

(2)通过数据控制电子标签负载电阻的接通和断开,这些数据将能从电子标签传送到读写器。

<2>电磁反向散射中的负载调制

(1)标签天线的反射性能受到连接到天线的负载变化的影响,因此可以采用负载调制方法实现反射调制。

(2)通过与天线并联一个附加负载电阻或电容,传输的数据流控制该电阻或电容的接通和断开,从而完成对标签反射功率的振幅调制。

由此可见两种调制方式原来类似,都是通过并联一个可变化的电阻或者电容,来控制线圈或者天线的输出电压,通过这个变化的电压向外传递信号0与1。


二。RFID无线通信中的调制

1.无线通信为什么需要调制

(1)无线通信中信道的概念

1.无线通信中的信道是发送端和接收端之间通路的一种形象比喻,无线信道也就是常说的无线的"频段(Channel)"

2.信道的频带宽度:允许传输的频率范围,例如,我国将840~845MHz和920~925MHz分配给RFID使用,则信道的频带宽度是2个5MHz。

3.信道容量:单位时间内能可靠传输的最大信息量,和频带宽度以及信噪比成正比。

(2)无线通信为什么需要调制

1.数字基带信号不适于无线传输,所以,把数字基带信号搬移到射频,用射频进行无线传输,以适应信道传输的要求。将基带信号搬移到射频的过程称为调制 ,其逆过程称之为解调

(1)原因1:基带信号因为频谱过宽,无法直接传输。

(2)原因2:利于信道复用,一般每个被传输信号的带宽小于信道带宽,可以将基带信号搬移到信道内不同频点传输。

(3)原因3:提高抗干扰能力,使接收端解调增益更高。

(4)原因4:对无源RFID标签,需要载波提供能量。

2.RFID系统常见的调制方法

(1)振幅键控(ASK)

14443-A 读写器-标签 100%ASK

14443-B 读写器-标签 10%ASK

14443-A 标签-读写器 100%ASK(副载波847k)

18000-6C 读写器-标签 80%~100%ASK

(2)频移键控

18000-7(433MHz) 读写器-标签

(3)相移键控

14443-B 标签-读写器(副载波847k)

(4)副载波调制

目的是方便读写器检出标签反馈的信号,电感耦合方式常用


三。RFID无线通信中的编码

1.无线通信为什么需要编码

1.编码分为信源编码和信道编码,本处讨论的是信道编码。

2.信道编码是指对待传输(二进制)数据进行适当变换,使其更利于传输,接收端需要解码。

原因1:是克服数字信号中连续的0或者1,产生的直流分量。

原因2:是为接收端提供可靠的时钟同步信号。

原因3:可以增加监督码元,增加抗干扰能力。

2.RFID系统常见的编码方法(计算机网络有详细设计)

(1)反向不归零码

1.反向不归零 (NRZ)编码

(1)有直流

(2)不能直接提取同步信号

(3)一般用于近距离传输

例如:14443-B读写器和标签双向

(2)曼彻斯特编码

1.曼彻斯特(Manchester)编码

(1)负脉冲表示1,正脉冲表示0

(2)自同步编码

(3)构成比特数据的校验

例如:14443-A标签到读写器

(3)米勒编码

1.米勒(Miller)编码

(1)改进的Manchester编码

(2)中心点有电平转换表示1,没有表示0

(3)连续的0则在码结束点进行电平转换

(4)接收器容易建立节拍

例如:14443-A读写器到标签

(4)双向空间编码

1.双向空间编码(FM0)

(1)0在位中间和边沿均发生电平转换

(2)1只在位边沿发生电平转换

例如:18000-6C的标签到读写器

(5)脉冲间隔编码

1.脉冲间隔编码(PIE)

(1)是0和1有不同时间间隔的一种编码方式

(2)有4种编码符:0,1,SOF,EOF

(3)数据按帧传送,由SOF,命令数据和EOF组成

(4)作为读写器到标签的编码使用,比其他编码有更长的充电时间,可以为标签提供更多的能量

例如:18000-6C读写器到标签


四。RFID系统中的标签和读写器

1.RFID系统中标签和读写器基本组成

2.不同频段RFID系统中的标签和读写器

(1)低频RFID系统中的标签和读写器

常见标签芯片有T5577和EM4200等。

读写器一般由单片机+射频调制解调电路组成,对外多为串口。

(2)高频RFID系统中的标签和读写器

常见标签芯片有MIFARE Class , MIFARE Ultralight, NTAG212等。

读写器一般由单片机+专用读写接口芯片组成,如MFRC522、CLRC663、ST25R3911、FM17550、Si522等,对外多为串口、USB口。

(3)超高频RFID系统中的标签和读写器

常见标签芯片有Impinj的Monza 4和NXP的UCode7 等。

读写器一般由专用读写接口芯片组成,如Indy R2000、ST25RU3993、FM13RD1616等,对外多为串口。

四个问题:

  1. RFID按频段不同,工作原理也有差异,主要分为 电感耦合和 电磁反向散射耦合。

  2. 14443-A,标签到读写器的调制方式是 振幅键控(ASK) 编码格式是: 曼彻斯特编码。

  3. EPC C1G2标准读写器到标签的编码格式是 脉冲间隔编码(PIE),调制方法是: Binary Phase Shift Keying二进制移相键控法 (BPSK)。

  4. 简述无源RFID标签是如何从读写器上获得能量的。

无源RFID的天线接收从读卡器上传递过来的电磁场能并把能量转化为射频能,射频能通过建波变为电能。

相关推荐
7yewh3 小时前
嵌入式知识点总结 ARM体系与架构 专题提升(四)-编程
arm开发·stm32·单片机·嵌入式硬件·mcu·物联网·51单片机
『往事』&白驹过隙;4 小时前
操作系统(Linux Kernel 0.11&Linux Kernel 0.12)解读整理——内核初始化(main & init)之缓冲区的管理
linux·c语言·数据结构·物联网·操作系统
Jzin4 小时前
【物联网】ARM核常用指令(详解):数据传送、计算、位运算、比较、跳转、内存访问、CPSR/SPSR、流水线及伪指令
arm开发·物联网
7yewh7 小时前
嵌入式知识点总结 操作系统 专题提升(一)-进程和线程
linux·arm开发·驱动开发·stm32·嵌入式硬件·mcu·物联网
LS·Cui21 小时前
第7章 任务的定义与任务切换的实现--总结
物联网
7yewh1 天前
嵌入式知识点总结 C/C++ 专题提升(七)-位操作
c语言·c++·stm32·单片机·mcu·物联网·位操作
Anna_Tong1 天前
物联网边缘(Beta)离全面落地还有多远?
物联网·阿里云·边缘计算·腾讯云·智能制造
雪兽软件1 天前
零售业革命:改变行业的顶级物联网用例
物联网
XLYcmy1 天前
三篇物联网漏洞挖掘综述
论文阅读·物联网·网络安全·静态分析·漏洞挖掘·动态分析·固件
神一样的老师1 天前
基于马尔可夫链和多属性决策方法的物联网生态系统信任评分预测与管理
物联网