代码随想录算法训练营第五十六天 | 动态规划 part 14 | 1143.最长公共子序列、1035.不相交的线、53. 最大子序和(dp)

目录

1143.最长公共子序列

Leetcode

思路

本题和718. 最长重复子数组 区别在于这里不要求是连续的了,但要有相对顺序,即:"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。

不是连续的话,具体写代码的区别体现在递推公式上,

if text1[i - 1] != text2[j - 1]: dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])

从下图可以看出来可以有三个方向推导出dp[i][j]

举例推导dp数组

以输入:text1 = "abcde", text2 = "ace" 为例,dp状态如图:

代码

python 复制代码
class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        dp = [[0] * (len(text1) + 1) for _ in range(len(text2) + 1)]

        for i in range(1, len(text2) + 1):
            for j in range(1, len(text1) + 1):
                if text2[i - 1] == text1[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1] + 1
                else:
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
        
        return dp[-1][-1]
  • 时间复杂度: O(n * m),其中 n 和 m 分别为 text1 和 text2 的长度
  • 空间复杂度: O(n * m)

1035.不相交的线

Leetcode

思路

此题和上题一模一样。

代码

python 复制代码
class Solution:
    def maxUncrossedLines(self, nums1: List[int], nums2: List[int]) -> int:
        dp = [[0] * (len(nums1) + 1) for _ in range(len(nums2) + 1)]

        for i in range(1, len(nums2) + 1):
            for j in range(1, len(nums1) + 1):
                if nums2[i - 1] == nums1[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1] + 1
                else:
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
        
        return dp[-1][-1]

53. 最大子序和(dp)

Leetcode

思路

  1. dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]。
  2. 递推公式:
    dp[i]只有两个方向可以推出来:
    • dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和
    • nums[i],即:从头开始计算当前连续子序列和
      我一开始写成了dp[i] = max(dp[i], dp[i - 1] + nums[i]),那这就不对了,因为这样就会受到dp[i]初始化的影响。
  3. 初始化:dp[0] = nums[0],剩下的随意
  4. 遍历顺序从前往后
  5. 举例
    以示例一为例,输入:nums = [-2,1,-3,4,-1,2,1,-5,4],对应的dp状态如下:

代码

python 复制代码
class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        dp = [nums[0]] * len(nums)
        res = nums[0]
        for i in range(1, len(nums)):
            dp[i] = max(nums[i], dp[i - 1] + nums[i])
            res = max(res, dp[i])
        return res
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)
相关推荐
CAE3202 小时前
基于机器学习的智能垃圾短信检测超强系统
人工智能·python·机器学习·自然语言处理·垃圾短信拦截
MarcoPage3 小时前
Python 字典推导式入门:一行构建键值对映射
java·linux·python
星释7 小时前
Rust 练习册 :Pythagorean Triplet与数学算法
开发语言·算法·rust
星释7 小时前
Rust 练习册 :Nth Prime与素数算法
开发语言·算法·rust
ζั͡山 ั͡有扶苏 ั͡✾8 小时前
从零搭建 Data-Juicer:一站式大模型数据预处理与可视化平台完整教程
python·data-juicer
多喝开水少熬夜8 小时前
Trie树相关算法题java实现
java·开发语言·算法
WBluuue8 小时前
数据结构与算法:树上倍增与LCA
数据结构·c++·算法
SkylerHu9 小时前
tornado+gunicorn部署设置max_body_size
python·tornado·gunicorn
bruk_spp9 小时前
牛客网华为在线编程题
算法
独行soc9 小时前
2025年渗透测试面试题总结-234(题目+回答)
网络·python·安全·web安全·渗透测试·1024程序员节·安全狮