【Java】Stream规约操作及使用场景

reduce

reduce操作可以从一组元素中规约 生成一个值, 它可以实现多种操作, 在java流中max, min, sum, count的本质都是规约操作; 下面是规约操作的定义, 它通过一个初始值identity进行累加, 最后生成一个值, 在并发并发情况下, 还可能会需要对多个累加的值进行合并

java 复制代码
<U> U reduce(U identity,
             BiFunction<U, ? super T, U> accumulator,
             BinaryOperator<U> combiner);

max

下面是对reduce的一个最基本的使用, 找到长度最大的字符串的值; 它从第一个元素开始累计, 每次对比两个元素并取较大的元素; 如此进行累加, 最后得到的便是最大的元素

java 复制代码
System.out.println(Stream.of("I", "love", "you", "too")
        .reduce((s1, s2) -> s1.length() >= s2.length() ? s1 : s2)
        .orElse(null));

System.out.println(Stream.of("I", "love", "you", "too")
        .max((s1, s2) -> s1.length() - s2.length())
        .orElse(null));

sum

max无需指定幺元identitycombiner因为它是从第一个元素开始累加的; 其会从第一个元素开始累积, 并且会调用acuumulator进行combine; 而sum方法需要自己指定初始值为0, 并指定combiner的逻辑为两个分段的相加, 如下面的例子计算流中的字符数

java 复制代码
public void totalLength() {
    System.out.println(Stream.of("I", "love", "you", "too")
            .reduce(0
                    , (total, s) -> total + s.length()
                    , (a, b) -> a + b));
}

collect

基本使用

相比于之前的通过reduce生成单个元素, collect可以生成一个新的集合; 它也是java Stream中最灵活的api, 下面是将Java流转化为各种集合的例子, 它将字符串集合转化为了字符串列表和字符串与字符串长度映射的map, 为了方便操作, jdk还为我们提供了Collectors工具类, 包含了大多数jdk自带类型的操作:

java 复制代码
public void collect() {
    System.out.println(Stream.of("I", "love", "you", "too")
            .collect(ArrayList::new, ArrayList::add, ArrayList::addAll)
            .toString());

    System.out.println(Stream.of("I", "love", "you", "too")
            .collect(Collectors.toList())
            .toString());

    System.out.println(Stream.of("I", "love", "you", "too")
            .collect(Collectors.toCollection(LinkedList::new))
            .toString());
}

除了对集合的collect, 对于字符串还有一些扩展的功能, 如join, 下面会将字符串包裹在大括号中, 并使用, 进行分隔

java 复制代码
public void collectorJoin() {
    String collect = Stream.of("I", "love", "you", "too")
            .collect(Collectors.joining(",", "{", "}"));
    System.out.println(collect);
}

生成map

collect不仅可以根据集合中的数据直接生成map, 如下面就生成字符串与长度的map

java 复制代码
public void collectToMap() {
    Map<String, Integer> collect = Stream.of("I", "love", "you", "too")
            .collect(Collectors.toMap(Function.identity(), String::length));
    System.out.println(collect);
}

还可以通过groupby进行分组, 如下面的例子中就根据字符串的长度进行分组, groupCollector是根据某个classifier进行分组, 而partitioningBy是根据predicate进行分组即将符合条件和不符合条件的分为两组

java 复制代码
public void groupCollector() {
    Map<Integer, List<String>> collect = Stream.of("I", "love", "you", "too")
            .collect(Collectors.groupingBy(String::length));
    System.out.println(collect);
}
public void partitionCollector() {
    Map<Boolean, List<String>> collect = Stream.of("I", "love", "you", "too")
            .collect(Collectors.partitioningBy(s -> s.length() > 3));
    System.out.println(collect);
}

有的时候, 我们分组后并不想要原来的数据, 而是想要获得加工后的数据, collect提供了下游处理器downstream对分组后的结果进行处理; 如下面的例子中, 就对分组后的结果进行计数

java 复制代码
public void collectorDownstream() {
    Map<Integer, Long> collect = Stream.of("I", "love", "you", "too")
            .collect(Collectors.groupingBy(String::length, Collectors.counting()));
    System.out.println(collect);
}
相关推荐
gadiaola27 分钟前
【JVM】Java虚拟机(二)——垃圾回收
java·jvm
coderSong25683 小时前
Java高级 |【实验八】springboot 使用Websocket
java·spring boot·后端·websocket
Mr_Air_Boy4 小时前
SpringBoot使用dynamic配置多数据源时使用@Transactional事务在非primary的数据源上遇到的问题
java·spring boot·后端
豆沙沙包?4 小时前
2025年- H77-Lc185--45.跳跃游戏II(贪心)--Java版
java·开发语言·游戏
年老体衰按不动键盘5 小时前
快速部署和启动Vue3项目
java·javascript·vue
咖啡啡不加糖5 小时前
Redis大key产生、排查与优化实践
java·数据库·redis·后端·缓存
liuyang-neu5 小时前
java内存模型JMM
java·开发语言
UFIT5 小时前
NoSQL之redis哨兵
java·前端·算法
刘 大 望5 小时前
数据库-联合查询(内连接外连接),子查询,合并查询
java·数据库·sql·mysql
怀旧,5 小时前
【数据结构】6. 时间与空间复杂度
java·数据结构·算法