5.Vectors Transformation Rules

在上节,有个问题:向量分量的转换方式 与 新旧基底的转换方式相反

用例子来感受一下,

空间中一向量V,即该空间的一个基底:e1、e2

v = e1 + e2

现把基底 e1 、 e2 放大两倍。变成

基向量放大了两倍, 但对于向量v ,其向量组件缩小了两倍。

它们两个 做了相反的事, 基向量放大, 某向量的向量组件缩小。 但V是不变的。

当使用新的基向量测量V时,V看起来更小,因为基向量变大了两倍

另一个例子:

旧基底:e1 、 e2 ; 新基底:

向量V

V 由大约相等的部分 e1 、e2组成, 且V与e1、e2的夹角大致相等。 意味着每个方向上的组件大致相同;

现顺时针选择这对基底, 使得V与的夹角 大于 V与的夹角。 V不变

但V现在与相比,V更接近 , 这时,组件做了相反的事,V = x +y

x肯定是 < y 的

回到上节最后那部分的内容,

当向量分量的行为方式 与 基向量的行为 相反 时,当基变大时,这是 完全有意义的。

意义:当基变大时,分量会缩小; 当基底向一个方向旋转时,组件 会向另一个方向旋转。

无论基底做什么,组件都会做 相反 的事。

通过这两个例子, 就能对2D中会发生这种相反的行为有了一定直觉。

那是否是在任何维度都如此呢?

证明 :(当然也是针对向量,旧基、新基的行为,组件的行为)

利用这个,以及之前的前向变换和后向变换。

代入,化简

以上就证明了,为从 旧组件 转移到 新组件, 我们实际上是 使用了 后向转换(Backward)

类似的,从新组件 转移到旧组件, 使用 向前转换(Forward)

现在因为向量分量的行为 与 基向量相反,

我们说 向量分量 是 Contra-variant

(向量是 逆变张量 vectors are contravariant tensors)

规定:

上述形式,改为:

这里向量V 已经被我们用 新基的线性组合或者旧基的线性组合写出,

但这些向量组件,因为它们是 CONTRA-variant。

我们将在编写方式上做点 改变,

把组件()的索引i写到字母v右上方

通过写在右上角,提醒 我们 组件是逆变的。

注意哦,把系数的i放到右上角, 其仍然是索引值,表示第 i 个,而不是 指数

基向量的索引是在右下角, 向量组件的索引在右上角,在某种程度上提醒了它们的行为方式相反

相关推荐
Coding茶水间1 分钟前
基于深度学习的肾结石检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
Blossom.11827 分钟前
基于多模态大模型的工业质检系统:从AOI到“零样本“缺陷识别的产线实践
运维·人工智能·python·机器学习·自动化·测试用例·知识图谱
美狐美颜sdk32 分钟前
什么是美颜SDK?一套成熟直播美颜SDK需要解决哪些工程技术问题?
人工智能·美颜sdk·第三方美颜sdk·视频美颜sdk·人脸美型sdk
无代码专家44 分钟前
无代码:打破技术桎梏,重构企业数字化落地新范式
大数据·人工智能·重构
usrcnusrcn44 分钟前
告别PoE管理盲区:有人物联网工业交换机如何以智能供电驱动工业未来
大数据·网络·人工智能·物联网·自动化
雍凉明月夜1 小时前
视觉opencv学习笔记Ⅴ-数据增强(1)
人工智能·python·opencv·计算机视觉
骚戴1 小时前
深入解析:Gemini 3.0 Pro 的 SSE 流式响应与跨区域延迟优化实践
java·人工智能·python·大模型·llm
CNRio1 小时前
从智能穿戴设备崛起看中国科技自立自强的创新实践
人工智能·科技·物联网
疾风sxp1 小时前
nl2sql技术实现自动sql生成之Spring AI Alibaba Nl2sql
java·人工智能
程序猿追1 小时前
使用GeeLark+亮数据,做数据采集打造爆款内容
运维·服务器·人工智能·机器学习·架构