Java 分布式主键策略

背景

随着业务的增长,文章表可能要占用很大的物理存储空间,为了解决该问题,后期使用数据库分片技术。

将一个数据库进行拆分,通过数据库中间件连接。如果数据库中该表选用ID自增策略,则可能产生重复的ID,

此时应该使用分布式ID生成策略来生成ID。

技术选型

方案 优势 劣势
Redis (INCR)生成一个全局连续递增的类型主键 增加了一个外部组件的依赖,Redis不可用,则整个(INCR)生成一个全局连续递增的数字类数据库将无法在插入
UUID 全局唯一,Mysql也有UUID实现 36个字符组成,占用空间大
Snowflake算法 全局唯一,数字类型,存储成本低 机器规模大于1024台无法支持

雪花算法

snowflake是Twitter开源的分布式ID生成算法,结果是一个ong型的ID。

其核心思想是: 使用41bit作为毫秒数,10bit作为机器的ID(5个bit是数据中心,5个bit的机器ID),12bt作为毫秒内的流水号(意味着每个节点在每毫秒可以产生4096个ID),最后还有一个符号位,永远是0

设置雪花算法

实体类上添加注解@TableId(value = "id",type =IdType.ASSIGN_ID )

kotlin 复制代码
@TableId(value = "id",type =IdType.ASSIGN_ID )
private Long id;

此外,还可以指定机房id和机器id

yaml 复制代码
mybatis-plus:
    global-config:
        # 机房id 0-31
        datacenter-id: 1
        # 机器id
        workerId: 1

小结

数据库的索引是由id进行组织的一个b+树,而b+树这种数据结构,本身是一种有序的多叉树,使用自增id可以减少维护b+带来的性能开销;其次自增id通常使用个id类型的自增类型,而uuid是字符串,字符串所占用的内存空间比long大得多;同时在非聚簇索引每一个非叶子节点存储的就是主键,这也就意味着如果使用uuid每一页能存储的数量会变少,层高可能会变高,性能下降。

但是实际上我们的业务并没有特别高的并发量,并不会要求极致的性能,人员成本、开发周期等因素怎么也需要考虑;很多场景快速的当主键,也是不错的选择。

相关推荐
笨蛋不要掉眼泪21 小时前
Spring Boot集成LangChain4j:与大模型对话的极速入门
java·人工智能·后端·spring·langchain
sheji34161 天前
【开题答辩全过程】以 基于SpringBoot的疗养院管理系统的设计与实现为例,包含答辩的问题和答案
java·spring boot·后端
短剑重铸之日1 天前
《设计模式》第六篇:装饰器模式
java·后端·设计模式·装饰器模式
码界奇点1 天前
基于Flask与OpenSSL的自签证书管理系统设计与实现
后端·python·flask·毕业设计·飞书·源代码管理
代码匠心1 天前
从零开始学Flink:状态管理与容错机制
java·大数据·后端·flink·大数据处理
分享牛1 天前
LangChain4j从入门到精通-11-结构化输出
后端·python·flask
知识即是力量ol1 天前
在客户端直接上传文件到OSS
java·后端·客户端·阿里云oss·客户端直传
闻哥1 天前
深入理解 Spring @Conditional 注解:原理与实战
java·jvm·后端·python·spring
qq_256247051 天前
Google 账号防封全攻略:从避坑、保号到申诉解封
后端
MX_93591 天前
使用Spring的BeanFactoryPostProcessor扩展点完成自定义注解扫描
java·后端·spring