深度学习基础之参数量(3)

一般的CNN网络的参数量估计代码

python 复制代码
class ResidualBlock(nn.Module):
    def __init__(self, in_planes, planes, norm_fn='group', stride=1):
        super(ResidualBlock, self).__init__()
        print(in_planes, planes, norm_fn, stride)

        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, stride=stride)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1)
        self.relu = nn.ReLU(inplace=True)

        num_groups = planes // 8

        if norm_fn == 'group':
            self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
            self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
            if not stride == 1:
                self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)

        elif norm_fn == 'batch':
            self.norm1 = nn.BatchNorm2d(planes)
            self.norm2 = nn.BatchNorm2d(planes)
            if not stride == 1:
                self.norm3 = nn.BatchNorm2d(planes)

        elif norm_fn == 'instance':
            self.norm1 = nn.InstanceNorm2d(planes)
            self.norm2 = nn.InstanceNorm2d(planes)
            if not stride == 1:
                self.norm3 = nn.InstanceNorm2d(planes)

        elif norm_fn == 'none':
            self.norm1 = nn.Sequential()
            self.norm2 = nn.Sequential()
            if not stride == 1:
                self.norm3 = nn.Sequential()

        if stride == 1:
            self.downsample = None

        else:
            self.downsample = nn.Sequential(
                nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3)

    def forward(self, x):
        print(x.shape)
        #exit()
        y = x
        y = self.relu(self.norm1(self.conv1(y)))
        y = self.relu(self.norm2(self.conv2(y)))

        if self.downsample is not None:
            x = self.downsample(x)

        return self.relu(x + y)


R=ResidualBlock(384, 384, norm_fn='instance', stride=1)
summary(R.to("cuda" if torch.cuda.is_available() else "cpu"), (384, 32, 32))

transformer结构的参数量的估计结果

python 复制代码
import torch
import torch.nn as nn
from thop import profile
from torchsummary import summary

# 定义一个简单的Transformer模型
class Transformer(nn.Module):
    def __init__(self, input_dim, hidden_dim, num_heads, num_layers):
        super(Transformer, self).__init__()
        self.embedding = nn.Embedding(input_dim, hidden_dim)
        self.transformer_layers = nn.Transformer(
            d_model=hidden_dim,
            nhead=num_heads,
            num_encoder_layers=num_layers,
            num_decoder_layers=num_layers
        )
        self.fc = nn.Linear(hidden_dim, input_dim)

    def forward(self, src, tgt):
        src = self.embedding(src)
        tgt = self.embedding(tgt)
        output = self.transformer_layers(src, tgt)
        output = self.fc(output)
        return output

# 创建Transformer模型实例
model2 = Transformer(input_dim=512, hidden_dim=512, num_heads=8, num_layers=6)

# 使用thop进行FLOPS估算
flops, params = profile(model2, inputs=(torch.randint(0, 512, (128,)), torch.randint(0, 512, (64,))))
print(f"FLOPS: {flops / 1e9} G FLOPS")  # 打印FLOPS,以十亿FLOPS(GFLOPS)为单位

# 计算参数量并打印
num_params = sum(p.numel() for p in model2.parameters() if p.requires_grad)
print(f"Total number of trainable parameters: {num_params}")
相关推荐
文心快码BaiduComate13 分钟前
全运会,用文心快码做个微信小程序帮我找「观赛搭子」
前端·人工智能·微信小程序
ChinaRainbowSea14 分钟前
13. Spring AI 的观测性
java·人工智能·后端·spring·flask·ai编程
2501_9411429319 分钟前
基于区块链的数字身份管理:探索安全与隐私的未来
网络·数据库·人工智能
B站_计算机毕业设计之家23 分钟前
python手写数字识别系统 CNN算法 卷积神经网络 OpenCV和Keras模型 计算机视觉 (建议收藏)✅
python·深度学习·opencv·机器学习·计算机视觉·cnn
骑猪兜风23331 分钟前
谷歌 AI IDE Antigravity 系统提示词分析
人工智能·ai编程·ai ide·gemini3·谷歌gemini3·antigravity
Jing_jing_X39 分钟前
ChatGPT 四种模式:普通对话、推理思考、深度研究、学习模式有什么区别?
人工智能·学习·chatgpt
汀、人工智能40 分钟前
AI Compass前沿速览:Gemini 3、Grok 4.1、GPT-5.1、千问、Lumine-3D开世界AI智能体
人工智能·gemini 3·grok4.1·gpt 5.1
用户51914958484540 分钟前
利用配置错误的postMessage()函数实现DOM型XSS攻击
人工智能·aigc
Valueyou241 小时前
引入基于加权 IoU 的 WiseIoU 回归损失以提升 CT 图像检测鲁棒性
人工智能·python·深度学习·目标检测