YOLOv2解析 | 批归一化 锚 主干网

文章目录

  • [1 改进](#1 改进)
    • [1.1 Batch Normalization 批归一化](#1.1 Batch Normalization 批归一化)
    • [1.2 High Resolution Classifier 更高分辨率的分类器](#1.2 High Resolution Classifier 更高分辨率的分类器)
    • [1.3 **Convolutional With Anchor Boxes 带锚盒的卷积**](#1.3 Convolutional With Anchor Boxes 带锚盒的卷积)
    • [1.4 Dimension Clusters 维度集群](#1.4 Dimension Clusters 维度集群)
    • [1.5 更深更宽的主干网络](#1.5 更深更宽的主干网络)
    • [1.6 Fine-Grained Features** **细粒度特征 **](#1.6 Fine-Grained Features** **细粒度特征 **)
    • [1.,7 Multi-Scale Training 多尺度训练](#1.,7 Multi-Scale Training 多尺度训练)

YOLOv2的改进

1 改进

1.1 Batch Normalization 批归一化

批归一化技术很常见

Batch Normalization可以提升模型收敛速度,而且可以起到一定正则化效果,降低模型的过拟合。在YOLOv2中,每个卷积层后面都添加了Batch Normalization层,并且不再使用droput。使用Batch Normalization后,YOLOv2的mAP提升了2.4%。

1.2 High Resolution Classifier 更高分辨率的分类器

更高分辨率的分类器实现更平稳的过渡

目前大部分的检测模型都会在先在ImageNet分类数据集上预训练模型的主体部分(CNN特征提取器),由于历史原因,ImageNet分类模型基本采用大小为 224×224 的图片作为输入,分辨率相对较低,不利于检测模型。

YOLOv1的方式是在采用 224×224 分类模型预训练后,将分辨率增加至 448×448 ,并使用这个高分辨率在检测数据集上finetune。但是直接切换分辨率,检测模型可能难以快速适应高分辨率

所以YOLOv2增加了在ImageNet数据集上使用 448×448 输入来finetune分类网络这一中间过程(10 epochs),这可以使得模型在检测数据集上finetune之前已经适用高分辨率输入,然后再切换到使用高分辨率分类器后,YOLOv2的mAP提升了约4%。

1.3 Convolutional With Anchor Boxes 带锚盒的卷积

在YOLOv1中,输入图片最终被划分为 7×7 网格,每个单元格预测2个边界框。YOLOv1最后采用的是全连接层直接对边界框进行预测,其中边界框的宽与高是相对整张图片大小的,而由于各个图片中存在不同尺度和长宽比(scales and ratios)的物体,YOLOv1在训练过程中学习适应不同物体的形状是比较困难的,这也导致YOLOv1在精确定位方面表现较差。

所以YOLOv2改为预测先验框坐标的偏移量,而不是坐标在每个grid预先设定一组不同大小和宽高比的边框,来覆盖整个图像的不同位置和多种尺度

之前YOLOv1并没有采用先验框,并且每个grid只预测两个bounding box,也就是整个图像只有98个bounding box。YOLOv2如果每个grid采用9个先验框,总共有13139=1521个先验框。所以最终YOLOv2去掉了全连接层,使用锚框来预测 Bounding Boxes。

通过这个锚框,降低了准确性mAP,但是提高了召回率

1.4 Dimension Clusters 维度集群

之前Anchor Box的尺寸是手动选择的,所以尺寸还有优化的余地。YOLOv2尝试统计出更符合样本中对象尺寸的先验框,这样就可以减少网络微调先验框到实际位置的难度。YOLOv2的做法是对训练集中标注的边框进行K-means聚类分析,以寻找尽可能匹配样本的边框尺寸。

1.5 更深更宽的主干网络

YOLOv1的backbone使用的是GoogleLeNet,速度比VGG-16快,YOLOv1完成一次前向过程只用8.52 billion 运算,而VGG-16要30.69billion,但是YOLOv1精度稍低于VGG-16。

YOLOv2基于一个新的分类model,有点类似与VGG。YOLOv2使用3*3filter,每次Pooling之后都增加一倍Channels的数量。YOLOv2使用Global Average Pooling,使用Batch Normilazation来让训练更稳定,加速收敛,使model规范化。最终的model--Darknet19,有19个卷积层和5个maxpooling层,处理一张图片只需要5.58 billion次运算,在ImageNet上达到72.9%top-1精确度,91.2%top-5精确度。

1.6 Fine-Grained Features** **细粒度特征 **

目标检测输入的物体可能有大有小,所以如果只用一种大小的特征可能会导致细粒度特征丢失,因而YOLOv2提出了一种passthrough层来利用更精细的特征图。

具体来说,就是在最后一个pooling之前,特征图的大小是26×26×512

一条路是将其1拆4得到四个特征图

另一条路直接传递(passthrough)到pooling后(并且又经过一组卷积)的特征图

两者叠加到一起作为输出的特征图。

1.,7 Multi-Scale Training 多尺度训练

由于YOLOv2模型中只有卷积层和池化层,所以YOLOv2的输入可以不限于 416×416 大小的图片。为了增强模型的鲁棒性,YOLOv2采用了多尺度输入训练策略,具体来说就是在训练过程中每间隔一定的iterations之后改变模型的输入图片大小

由于YOLOv2的下采样总步长为32,输入图片大小选择一系列为32倍数的值: {320,352,...,608} ,输入图片最小为 320×320 ,此时对应的特征图大小为 10×10 ,而输入图片最大为 608×608 ,对应的特征图大小为 19×19 。在训练过程,每隔10个iterations随机选择一种输入图片大小,然后只需要修改对最后检测层的处理就可以重新训练。

相关推荐
Lun3866buzha26 分钟前
YOLOv10-BiFPN融合:危险物体检测与识别的革新方案,从模型架构到实战部署全解析
yolo
Katecat996631 小时前
YOLOv8-MambaOut在电子元器件缺陷检测中的应用与实践_1
yolo
工程师老罗2 小时前
YOLOv1 核心知识点笔记
笔记·yolo
工程师老罗7 小时前
基于Pytorch的YOLOv1 的网络结构代码
人工智能·pytorch·yolo
学习3人组10 小时前
YOLO模型集成到Label Studio的MODEL服务
yolo
孤狼warrior11 小时前
YOLO目标检测 一千字解析yolo最初的摸样 模型下载,数据集构建及模型训练代码
人工智能·python·深度学习·算法·yolo·目标检测·目标跟踪
水中加点糖12 小时前
小白都能看懂的——车牌检测与识别(最新版YOLO26快速入门)
人工智能·yolo·目标检测·计算机视觉·ai·车牌识别·lprnet
前端摸鱼匠1 天前
YOLOv8 环境配置全攻略:Python、PyTorch 与 CUDA 的和谐共生
人工智能·pytorch·python·yolo·目标检测
2501_941329721 天前
改进YOLOv8-seg-act__鸡只计数检测实战
yolo
weixin_395448911 天前
mult_yolov5_post_copy.c_cursor_0205
c语言·python·yolo