【目标检测之Ultralytics预测框颜色修改】

在 Ultralytics YOLOv8 中修改预测框颜色为红色,以下是三种实用方案:


方案 1:直接修改 plot() 方法的 colors 参数

在调用 results.plot() 时直接指定颜色参数:

python 复制代码
from ultralytics import YOLO

# 加载模型
model = YOLO("yolov8n.pt")

# 预测并绘制结果
results = model.predict("image.jpg")
plotted_img = results[0].plot(colors=(255, 0, 0))  # BGR格式:红色

# 保存或显示
plotted_img.show()  # 直接显示
# plotted_img.save("output.jpg")  # 保存结果

原理
plot() 方法的 colors 参数接受一个 BGR 元组 (B, G, R)(255, 0, 0) 表示红色。


方案 2:自定义调色板覆盖默认颜色

创建全红色的调色板并传递给 plot()

python 复制代码
from ultralytics import YOLO

# 加载模型
model = YOLO("yolov8n.pt")
results = model.predict("image.jpg")

# 创建全红色调色板 (每个类别都是红色)
num_classes = len(model.names)  # 获取类别总数
red_palette = [(255, 0, 0)] * num_classes  # 每个类别分配红色

# 应用自定义调色板
plotted_img = results[0].plot(colors=red_palette)
plotted_img.show()

原理

YOLOv8 默认使用类别索引映射调色板颜色。此方案为所有类别强制指定红色。


方案 3:修改 Annotator 源码(高级)

直接修改 Ultralytics 的绘图工具类:

  1. 找到文件 ultralytics/utils/plotting.py
  2. 定位 Annotator 类中的 box_label 方法。
  3. 将颜色生成逻辑改为固定红色:
python 复制代码
# 原始代码 (约在 265 行附近)
color = color or [random.randint(0, 255) for _ in range(3)]

# 修改为固定红色
color = (255, 0, 0)  # BGR: 红色

效果

全局所有预测框变为红色(需重新安装包或修改环境文件)。


额外方案:自定义后处理绘制

手动解析结果并绘制红色框:

python 复制代码
import cv2
from ultralytics import YOLO

# 加载模型和图像
model = YOLO("yolov8n.pt")
img = cv2.imread("image.jpg")
results = model.predict(img)

# 手动绘制结果
for box in results[0].boxes:
    x1, y1, x2, y2 = map(int, box.xyxy[0].tolist())
    cv2.rectangle(img, (x1, y1), (x2, y2), (0, 0, 255), 2)  # BGR红色 + 线宽2

# 显示结果
cv2.imshow("Red Boxes", img)
cv2.waitKey(0)

方案对比

方案 优势 适用场景
方案 1 简单快捷,单行代码修改 临时快速调试
方案 2 不修改源码,控制所有类别颜色 需全局红色但保留类别文本
方案 3 永久生效 长期项目且需全局修改
额外方案 完全自定义绘制逻辑 需要复杂自定义的场景

选择方案时,优先推荐 方案 1 (临时使用)或 方案 2(保留类别文本的红色框)。如需永久生效,可用方案 3(注意备份源码)。

相关推荐
xiaobaibai1535 分钟前
智慧交通中目标检测 mAP↑28%:陌讯多模态融合算法实战解析
人工智能·算法·目标检测·计算机视觉·目标跟踪·视觉检测
战争热诚13 分钟前
基于transformer的目标检测——匈牙利匹配算法
算法·目标检测·transformer
终将超越过去16 分钟前
分类-鸢尾花分类
人工智能·分类·数据挖掘
计算机科研圈18 分钟前
ICCV 2025 | EPD-Solver:西湖大学发布并行加速扩散采样算法
人工智能·算法·语言模型·自然语言处理·数据挖掘·iccv
清朝牢弟26 分钟前
Ubuntu系统VScode实现opencv(c++)图像放缩与插值
c++·vscode·opencv·ubuntu·计算机视觉
涡能增压发动积33 分钟前
Browser-Use Agent使用初体验
人工智能·后端·python
zzywxc78733 分钟前
利用AI生成测试用例、优化测试执行、自我修复测试脚本,提升测试覆盖率和效率。
人工智能·测试用例·测试覆盖率
汤姆yu35 分钟前
基于图像识别与分类的中国蛇类识别系统
人工智能·分类·数据挖掘·图像识别
Yzxs0091 小时前
【8月优质EI会议合集|高录用|EI检索稳定】计算机、光学、通信技术、电子、建模、数学、通信工程...
大数据·人工智能·算法·计算机视觉·信息与通信
汉唐明月1 小时前
模型蒸馏:使用bert-base-uncased模型蒸馏出distilbert-base-uncased
人工智能·机器学习