入门基于深度学习(以yolov8和unet为例)的计算机视觉领域的学习路线

🎯 一、明确研究目标和应用场景

首先明确你研究的具体目标:

是在哪些图像上进行目标检测/分割?(如医学图像、交通监控、卫星图像等)

想解决什么实际问题?(如肿瘤检测、车辆识别、病灶分割等)

📚 二、理论知识准备

  1. 深度学习基础
    熟悉 Python 和深度学习框架(PyTorch 或 TensorFlow,建议 PyTorch,YOLOv8 和 UNet 都支持)

学习神经网络基本原理(前向传播、反向传播、梯度下降)

掌握 CNN、激活函数、优化器、损失函数等知识

推荐学习资源:

《深度学习》 ------ Ian Goodfellow

Coursera:DeepLearning.ai 系列课程

《动手学深度学习》(MXNet/PyTorch 版本)

  1. 目标检测相关知识
    了解目标检测发展(R-CNN → YOLO → YOLOv8)

了解 anchor box、IoU、NMS、mAP 等概念

  1. 图像分割相关知识
    学习 UNet 网络结构(编码器-解码器结构,跳跃连接)

掌握 Dice Loss、IoU Loss 等分割损失函数

可进一步了解:UNet++、Attention UNet 等改进模型

🧪 三、动手实践路径

第一步:环境搭建

安装 Python, PyTorch

配置 GPU(CUDA)加速训练(如使用 Colab / 本地 GPU / 服务器)

安装 YOLOv8:pip install ultralytics

安装 UNet(可用 segmentation_models_pytorch 或自己搭建)

第二步:YOLOv8 学习与实践

✅ 快速入门 YOLOv8

官方教程:https://docs.ultralytics.com

使用官方命令行训练模型:

bash

复制

编辑

yolo task=detect mode=train model=yolov8n.pt data=your_dataset.yaml epochs=50 imgsz=640

✅ 数据准备

按 YOLOv8 格式准备数据集(images/train, images/val, labels/train, labels/val)

标签为 .txt 文件,格式为:

arduino

复制

编辑

class_id x_center y_center width height (相对坐标)

✅ 实现目标检测

先使用 COCO/VOC 数据集练手

再迁移到你自己的领域数据(如医学图像)

第三步:UNet 学习与实践

✅ 入门 UNet

实现最基本的 UNet 或使用 segmentation_models_pytorch 库

学会处理数据(图像 + mask)

使用二分类/多分类分割任务进行训练

✅ 数据增强

使用 Albumentations 进行图像增强

✅ 实验流程

准备 mask 标签(.png / .npy)

使用 DiceLoss, BCEWithLogitsLoss 等训练网络

可视化训练过程和预测结果(用 matplotlib)

🧪 四、小项目/课题建议

目标检测 + 分割 联合任务:

先用 YOLOv8 检测目标位置,再用 UNet 进行目标区域分割

举例:检测X光片中的肿瘤区域,再细致分割其形状

对比实验:

比较 YOLOv8 不同模型(nano/small/medium)性能

对比 UNet、UNet++、DeepLabv3+ 等分割网络性能

论文复现与改进:

选择一篇经典的目标检测或分割论文复现其方法

加入注意力机制(SE/CBAM)或 Transformer 改进结构

🧠 五、进阶建议

学习 模型调优(调学习率、batch size、loss函数、网络结构)

学会使用 TensorBoard / wandb 可视化训练过程

阅读相关论文(如 YOLOv8 的技术报告、UNet 论文、CVPR/ICCV/NIPS 论文)

✅ 总结:学习与研究路线图

复制

编辑

基础 → 工具配置 → YOLOv8 实践 → UNet 实践 → 联合模型设计 → 小项目 → 论文研究与创新

相关推荐
진영_2 小时前
Transformer(一)---背景介绍及架构介绍
人工智能·深度学习·transformer
星楠_0012 小时前
logits和softmax分布
人工智能·python·深度学习
AI数据皮皮侠9 小时前
中国各省森林覆盖率等数据(2000-2023年)
大数据·人工智能·python·深度学习·机器学习
蒋星熠14 小时前
TensorFlow与PyTorch深度对比分析:从基础原理到实战选择的完整指南
人工智能·pytorch·python·深度学习·ai·tensorflow·neo4j
GitNohup15 小时前
docker快速使用yolov11
yolo
老坛程序员16 小时前
开源项目Sherpa-onnx:全平台离线语音识别的轻量级高性能引擎
人工智能·深度学习·机器学习·语音识别
西西弗Sisyphus16 小时前
YOLO 11 图像分类推理 Web 服务
yolo·分类·yolo 11
无风听海16 小时前
神经网络之Softmax激活函数求导过程
人工智能·深度学习·神经网络
IT古董17 小时前
【第五章:计算机视觉-项目实战之生成对抗网络实战】1.对抗生成网络原理-(1)对抗生成网络算法基础知识:基本思想、GAN的基本架构、应用场景、标注格式
人工智能·生成对抗网络·计算机视觉
、、、、南山小雨、、、、18 小时前
Pytorch强化学习demo
pytorch·深度学习·机器学习·强化学习