NLP - 数据预处理 - 文本按句子进行切分

NLP - 数据预处理 - 文本按句子进行切分

文章目录

一、前言

在学习对数据训练的预处理的时候遇到了一个问题,就是如何将文本按句子切分 ,使用传统的jieba切割的颗粒度在词的程度,不能满足训练word2vec模型的需要。(py,手动实现自然也是可以,不过感觉斯,有py社区辣么发达相比有人实现了伐,就没有重复造轮子)

要对文本按句子进行切分,可以使用Python的nltk库,它提供了一个名为sent_tokenize的函数,用于将文本切分为句子。以下是如何实现这个功能的示例:

二、环境配置

1、安装nltk库

复制代码
pip install nltk

2、下载punkt分句器

如果使用的是nltk的第一次,需要下载punkt资源

下载地址:https://www.nltk.org/nltk_data/
手动下载所需punkt包 (运行程序也能下载,不过由于一些网络原因比较难直接下载下来)

将下载的文件解压放到这个文件夹:C:\Users\Admin\AppData\Roaming\nltk_data\tokenizers

注:如果找不到路径:nltk_data\tokenizers,则手动创建

三、运行程序

使用sent_tokenize函数对文本进行按句切分:

python 复制代码
import nltk
from nltk.tokenize import sent_tokenize

# 如果使用的是nltk的第一次,需要下载punkt资源
nltk.download('punkt')

# 示例文本
text = "This is an example sentence. Here is another one! And what about this one? Let's try it out."

# 将文本切分为句子
sentences = sent_tokenize(text)

# 输出切分后的句子
for i, sentence in enumerate(sentences):
    print(f"Sentence {i+1}: {sentence}")

在这个示例中,我们首先从nltk.tokenize模块中导入sent_tokenize 函数。然后,我们定义了一个包含多个句子的文本。接下来,我们使用sent_tokenize函数将文本切分为句子,最后输出切分后的句子。

运行参考结果:

sent_tokenize函数使用预训练的Punkt分句器 ,它能够处理多种语言,并能很好地处理复杂的句子切分。在使用sent_tokenize时,您还可以通过提供一个可选参数language来指定文本的语言,以便更好地适应不同语言的句子切分规则。例如:

python 复制代码
sentences = sent_tokenize(text, language='english')

四、额外补充

注:punkt 该库不支持中文,中文分句子比较的是另外一个库:pkuseg

这个库配好环境后下面的就可以直接使用了

python 复制代码
import pkuseg

# 示例中文文本
text = "这是一个示例句子。这是另一个!这个怎么样?让我们试试看。"

# 配置pkuseg
seg = pkuseg.pkuseg()

# 将文本切分为句子
sentences = seg.cut(text)

# 输出切分后的句子
for i, sentence in enumerate(sentences):
    print(f"句子 {i + 1}: {sentence}")
相关推荐
日晨难再2 小时前
DSO.ai:基于AI的搜索优化型EDA工具介绍
人工智能·数字ic
机器学习之心HML2 小时前
多光伏电站功率预测新思路:当GCN遇见LSTM,解锁时空预测密码,python代码
人工智能·python·lstm
JarryStudy2 小时前
HCCL与PyTorch集成 hccl_comm.cpp DDP后端注册全流程
人工智能·pytorch·python·cann
大闲在人2 小时前
10. 配送中心卡车卸货流程分析:产能利用率与利特尔法则的实践应用
人工智能·供应链管理·智能制造·工业工程
woshikejiaih2 小时前
**播客听书与有声书区别解析2026指南,适配不同场景的音频
大数据·人工智能·python·音视频
qq7422349842 小时前
APS系统与OR-Tools完全指南:智能排产与优化算法实战解析
人工智能·算法·工业·aps·排程
兜兜转转了多少年2 小时前
从脚本到系统:2026 年 AI 代理驱动的 Shell 自动化
运维·人工智能·自动化
LLWZAI2 小时前
十分钟解决朱雀ai检测,AI率为0%
人工智能
无忧智库2 小时前
某市“十五五“智慧气象防灾减灾精准预报系统建设方案深度解读 | 从“看天吃饭“到“知天而作“的数字化转型之路(WORD)
大数据·人工智能
方见华Richard2 小时前
方见华个人履历|中英双语版
人工智能·经验分享·交互·原型模式·空间计算