NLP - 数据预处理 - 文本按句子进行切分

NLP - 数据预处理 - 文本按句子进行切分

文章目录

一、前言

在学习对数据训练的预处理的时候遇到了一个问题,就是如何将文本按句子切分 ,使用传统的jieba切割的颗粒度在词的程度,不能满足训练word2vec模型的需要。(py,手动实现自然也是可以,不过感觉斯,有py社区辣么发达相比有人实现了伐,就没有重复造轮子)

要对文本按句子进行切分,可以使用Python的nltk库,它提供了一个名为sent_tokenize的函数,用于将文本切分为句子。以下是如何实现这个功能的示例:

二、环境配置

1、安装nltk库

复制代码
pip install nltk

2、下载punkt分句器

如果使用的是nltk的第一次,需要下载punkt资源

下载地址:https://www.nltk.org/nltk_data/
手动下载所需punkt包 (运行程序也能下载,不过由于一些网络原因比较难直接下载下来)

将下载的文件解压放到这个文件夹:C:\Users\Admin\AppData\Roaming\nltk_data\tokenizers

注:如果找不到路径:nltk_data\tokenizers,则手动创建

三、运行程序

使用sent_tokenize函数对文本进行按句切分:

python 复制代码
import nltk
from nltk.tokenize import sent_tokenize

# 如果使用的是nltk的第一次,需要下载punkt资源
nltk.download('punkt')

# 示例文本
text = "This is an example sentence. Here is another one! And what about this one? Let's try it out."

# 将文本切分为句子
sentences = sent_tokenize(text)

# 输出切分后的句子
for i, sentence in enumerate(sentences):
    print(f"Sentence {i+1}: {sentence}")

在这个示例中,我们首先从nltk.tokenize模块中导入sent_tokenize 函数。然后,我们定义了一个包含多个句子的文本。接下来,我们使用sent_tokenize函数将文本切分为句子,最后输出切分后的句子。

运行参考结果:

sent_tokenize函数使用预训练的Punkt分句器 ,它能够处理多种语言,并能很好地处理复杂的句子切分。在使用sent_tokenize时,您还可以通过提供一个可选参数language来指定文本的语言,以便更好地适应不同语言的句子切分规则。例如:

python 复制代码
sentences = sent_tokenize(text, language='english')

四、额外补充

注:punkt 该库不支持中文,中文分句子比较的是另外一个库:pkuseg

这个库配好环境后下面的就可以直接使用了

python 复制代码
import pkuseg

# 示例中文文本
text = "这是一个示例句子。这是另一个!这个怎么样?让我们试试看。"

# 配置pkuseg
seg = pkuseg.pkuseg()

# 将文本切分为句子
sentences = seg.cut(text)

# 输出切分后的句子
for i, sentence in enumerate(sentences):
    print(f"句子 {i + 1}: {sentence}")
相关推荐
星爷AG I5 分钟前
9-26 主动视觉(AGI基础理论)
人工智能·计算机视觉·agi
爱吃泡芙的小白白11 分钟前
CNN参数量计算全解析:从基础公式到前沿优化
人工智能·神经网络·cnn·参数量
拐爷21 分钟前
vibe‑coding 九阳神功之喂:把链接喂成“本地知识”,AI 才能稳定干活(API / 设计 / 报道 / 截图)
人工智能
石去皿21 分钟前
大模型面试通关指南:28道高频考题深度解析与实战要点
人工智能·python·面试·职场和发展
jasligea32 分钟前
构建个人智能助手
开发语言·python·自然语言处理
yuezhilangniao32 分钟前
AI智能体全栈开发工程化规范 备忘 ~ fastAPI+Next.js
javascript·人工智能·fastapi
好奇龙猫34 分钟前
【人工智能学习-AI入试相关题目练习-第十八次】
人工智能·学习
Guheyunyi38 分钟前
智能守护:视频安全监测系统的演进与未来
大数据·人工智能·科技·安全·信息可视化
程序员辣条42 分钟前
AI产品经理:2024年职场发展的新机遇
人工智能·学习·职场和发展·产品经理·大模型学习·大模型入门·大模型教程
AI大模型测试43 分钟前
大龄程序员想转行到AI大模型,好转吗?
人工智能·深度学习·机器学习·ai·语言模型·职场和发展·大模型