【机器学习】svm

参考

sklearn中SVC中的参数说明与常用函数_sklearn svc参数-CSDN博客https://blog.csdn.net/transformed/article/details/90437821

参考PYthon 教你怎么选择SVM的核函数kernel及案例分析_clf=svm.svc(kernel=)-CSDN博客https://blog.csdn.net/c1z2w3456789/article/details/105247565

四种核函数

四种核函数在四种不同分布数据上的表现

博主总结:

linear、poly:

非线性数据集:linear和poly核函数在上表现会浮动,如果数据相对线性可分,则表现不错,如果是像环形数据那样彻底不可分的,则表现糟糕。

线性数据集:linear和poly核函数即便有扰动项也可以表现不错,可见poly核函数虽然也可以处理非线性情况,但更偏向于线性的功能。

sigmoid:

Sigmoid核函数就比较尴尬了,它在非线性数据上强于两个线性核函数,但效果明显不如rbf,它在线性数据上完全比不上线性的核函数们,对扰动项的抵抗也比较弱,所以它功能比较弱小,很少被用到。

rbf:

rbf核函数基本在任何数据集上都表现不错,属于比较万能的核函数。

python中svm使用

python 复制代码
clf = svm.SVC(kernel='rbf', class_weight='balanced', 
        C=5, gamma=0.3, max_iter=3000, tol=0.001, probability=True)

**C:**根据官方文档,这是一个软间隔分类器,对于在边界内的点有惩罚系数C,C的取值在0-1之间,默认值为1.0。C越大代表这个分类器对在边界内的噪声点的容忍度越小,分类准确率高,但是容易过拟合,泛化能力差。所以一般情况下,应该适当减小C,对在边界范围内的噪声有一定容忍。

**class_weight:**默认为None,给每个类别分别设置不同的惩罚参数C,如果没有给,则会给所有类别都给C=1,即前面指出的参数C.

**tol:**停止训练的误差精度,默认值为0.001

**probability:**默认为False,决定最后是否按概率输出每种可能的概率,但需注意最后的预测函数应改为clf.predict_proba。

**max_iter:**默认为-1,最大迭代次数,如果为-1,表示不限制

相关推荐
可乐+冰06 分钟前
Android 编写高斯模糊功能
android·人工智能·opencv
嘀咕博客1 小时前
SynClub-百度在海外推出的AI社交产品
人工智能·百度·ai工具
AI算法工程师Moxi1 小时前
什么是迁移学习(transfer learning)
人工智能·机器学习·迁移学习
空白到白2 小时前
机器学习-KNN算法
人工智能·算法·机器学习
aliedudu2 小时前
机器学习概述
人工智能·机器学习
love you joyfully2 小时前
循环神经网络——pytorch实现循环神经网络(RNN、GRU、LSTM)
人工智能·pytorch·rnn·深度学习·gru·循环神经网络
袁庭新2 小时前
AI如何辅助创业?年轻人一定要创业
人工智能·创业
GIS开发特训营3 小时前
【智慧城市】2025年中国地质大学(武汉)暑期实训优秀作品(2):智慧城市西安与一带一路
人工智能·信息可视化·智慧城市
飞哥数智坊3 小时前
扣子实战第19讲:Coze零代码打造“新生入学百事通”,辅导员都说好
人工智能·coze
上海控安3 小时前
上海控安:GB 44495-2024《汽车整车信息安全技术要求》标准解读和测试方案
大数据·人工智能·汽车