【机器学习】svm

参考

sklearn中SVC中的参数说明与常用函数_sklearn svc参数-CSDN博客https://blog.csdn.net/transformed/article/details/90437821

参考PYthon 教你怎么选择SVM的核函数kernel及案例分析_clf=svm.svc(kernel=)-CSDN博客https://blog.csdn.net/c1z2w3456789/article/details/105247565

四种核函数

四种核函数在四种不同分布数据上的表现

博主总结:

linear、poly:

非线性数据集:linear和poly核函数在上表现会浮动,如果数据相对线性可分,则表现不错,如果是像环形数据那样彻底不可分的,则表现糟糕。

线性数据集:linear和poly核函数即便有扰动项也可以表现不错,可见poly核函数虽然也可以处理非线性情况,但更偏向于线性的功能。

sigmoid:

Sigmoid核函数就比较尴尬了,它在非线性数据上强于两个线性核函数,但效果明显不如rbf,它在线性数据上完全比不上线性的核函数们,对扰动项的抵抗也比较弱,所以它功能比较弱小,很少被用到。

rbf:

rbf核函数基本在任何数据集上都表现不错,属于比较万能的核函数。

python中svm使用

python 复制代码
clf = svm.SVC(kernel='rbf', class_weight='balanced', 
        C=5, gamma=0.3, max_iter=3000, tol=0.001, probability=True)

**C:**根据官方文档,这是一个软间隔分类器,对于在边界内的点有惩罚系数C,C的取值在0-1之间,默认值为1.0。C越大代表这个分类器对在边界内的噪声点的容忍度越小,分类准确率高,但是容易过拟合,泛化能力差。所以一般情况下,应该适当减小C,对在边界范围内的噪声有一定容忍。

**class_weight:**默认为None,给每个类别分别设置不同的惩罚参数C,如果没有给,则会给所有类别都给C=1,即前面指出的参数C.

**tol:**停止训练的误差精度,默认值为0.001

**probability:**默认为False,决定最后是否按概率输出每种可能的概率,但需注意最后的预测函数应改为clf.predict_proba。

**max_iter:**默认为-1,最大迭代次数,如果为-1,表示不限制

相关推荐
N0nename7 小时前
TR3--Transformer之pytorch复现
人工智能·pytorch·python
北京耐用通信7 小时前
电力自动化新突破:Modbus如何变身Profinet?智能仪表连接的终极解决方案
人工智能·物联网·网络安全·自动化·信息与通信
golang学习记7 小时前
VSCode Copilot 编码智能体实战指南:让 AI 自主开发,你只负责 Review!
人工智能
渡我白衣7 小时前
深度学习进阶(八)——AI 操作系统的雏形:AgentOS、Devin 与多智能体协作
人工智能·深度学习
万岳软件开发小城8 小时前
AI数字人系统源码+AI数字人小程序开发:2025年热门AI项目
人工智能·开源·软件开发·app开发·ai数字人小程序·ai数字人系统源码
CLubiy8 小时前
【研究生随笔】Pytorch中的线性代数
pytorch·python·深度学习·线性代数·机器学习
xiangzhihong88 小时前
Spring Boot集成SSE实现AI对话的流式响应
人工智能·spring boot
羊羊小栈8 小时前
基于知识图谱(Neo4j)和大语言模型(LLM)的图检索增强(GraphRAG)的台风灾害知识问答系统(vue+flask+AI算法)
人工智能·毕业设计·知识图谱·创业创新·neo4j·毕设·大作业
+wacyltd大模型备案算法备案8 小时前
【大模型备案】全国有439个大模型通过生成式人工智能大模型备案!
人工智能
学不会就看8 小时前
PyTorch 张量学习
人工智能·pytorch·学习