机器学习中常见的监督学习方法和非监督学习方法有哪些。

问题描述:最近面试某些公司算法岗,看到一道简答题,让你举例熟悉的监督学习方法和非监督学习方法。

问题解答:

监督学习方法常见的比较多:

  1. 线性回归(Linear Regression): 用于回归问题,预测连续数值输出。

  2. 逻辑回归(Logistic Regression): 用于分类问题,预测二元或多元类别。

  3. 决策树(Decision Trees): 用于分类和回归问题,通过树状结构进行预测。

  4. 随机森林(Random Forests): 基于决策树的集成方法,用于分类和回归。

  5. 支持向量机(Support Vector Machines,SVM): 用于分类和回归问题,通过找到最优超平面进行预测。

  6. K近邻算法(K-Nearest Neighbors,KNN): 用于分类和回归问题,通过邻近点的投票来进行预测。

  7. 朴素贝叶斯(Naive Bayes): 用于分类问题,基于贝叶斯定理进行预测。

  8. 神经网络(Neural Networks): 深度学习方法,用于各种分类和回归问题。

  9. 梯度提升树(Gradient Boosting Trees): 一类强大的集成方法,如Adaboost和XGBoost。

监督学习方法不太常见:

  1. 聚类(Clustering): 包括K均值聚类、层次聚类等,用于将数据集中的样本划分为不同的组别。

  2. 主成分分析(Principal Component Analysis,PCA): 用于降维和特征提取,帮助理解数据的结构。

  3. 独立成分分析(Independent Component Analysis,ICA): 用于盲源分离和信号处理。

  4. 自编码器(Autoencoders): 用于学习数据的低维表示,通常用于特征学习。

  5. 关联规则挖掘(Association Rule Mining): 用于发现数据中的频繁项集和关联规则。

  6. 异常检测(Anomaly Detection): 用于识别不寻常或异常的数据点。

  7. 生成对抗网络(Generative Adversarial Networks,GANs): 用于生成新的数据样本,如图像、文本等。

  8. 流形学习(Manifold Learning): 用于学习数据的低维流形结构,如Isomap、LLE等。

相关推荐
whaosoft-14335 分钟前
51c自动驾驶~合集7
人工智能
刘晓倩4 小时前
Coze智能体开发实战-多Agent综合实战
人工智能·coze
石迹耿千秋5 小时前
迁移学习--基于torchvision中VGG16模型的实战
人工智能·pytorch·机器学习·迁移学习
Wendy14417 小时前
【线性回归(最小二乘法MSE)】——机器学习
算法·机器学习·线性回归
路人蛃8 小时前
通过国内扣子(Coze)搭建智能体并接入discord机器人
人工智能·python·ubuntu·ai·aigc·个人开发
CV-杨帆8 小时前
论文阅读:arxiv 2025 A Survey of Large Language Model Agents for Question Answering
论文阅读·人工智能·语言模型
绝顶大聪明8 小时前
【深度学习】神经网络-part2
人工智能·深度学习·神经网络
加百力8 小时前
AI助手竞争白热化,微软Copilot面临ChatGPT的9亿下载挑战
人工智能·microsoft·copilot
Danceful_YJ9 小时前
16.使用ResNet网络进行Fashion-Mnist分类
人工智能·深度学习·神经网络·resnet
香蕉可乐荷包蛋9 小时前
AI算法之图像识别与分类
人工智能·学习·算法