机器学习中常见的监督学习方法和非监督学习方法有哪些。

问题描述:最近面试某些公司算法岗,看到一道简答题,让你举例熟悉的监督学习方法和非监督学习方法。

问题解答:

监督学习方法常见的比较多:

  1. 线性回归(Linear Regression): 用于回归问题,预测连续数值输出。

  2. 逻辑回归(Logistic Regression): 用于分类问题,预测二元或多元类别。

  3. 决策树(Decision Trees): 用于分类和回归问题,通过树状结构进行预测。

  4. 随机森林(Random Forests): 基于决策树的集成方法,用于分类和回归。

  5. 支持向量机(Support Vector Machines,SVM): 用于分类和回归问题,通过找到最优超平面进行预测。

  6. K近邻算法(K-Nearest Neighbors,KNN): 用于分类和回归问题,通过邻近点的投票来进行预测。

  7. 朴素贝叶斯(Naive Bayes): 用于分类问题,基于贝叶斯定理进行预测。

  8. 神经网络(Neural Networks): 深度学习方法,用于各种分类和回归问题。

  9. 梯度提升树(Gradient Boosting Trees): 一类强大的集成方法,如Adaboost和XGBoost。

监督学习方法不太常见:

  1. 聚类(Clustering): 包括K均值聚类、层次聚类等,用于将数据集中的样本划分为不同的组别。

  2. 主成分分析(Principal Component Analysis,PCA): 用于降维和特征提取,帮助理解数据的结构。

  3. 独立成分分析(Independent Component Analysis,ICA): 用于盲源分离和信号处理。

  4. 自编码器(Autoencoders): 用于学习数据的低维表示,通常用于特征学习。

  5. 关联规则挖掘(Association Rule Mining): 用于发现数据中的频繁项集和关联规则。

  6. 异常检测(Anomaly Detection): 用于识别不寻常或异常的数据点。

  7. 生成对抗网络(Generative Adversarial Networks,GANs): 用于生成新的数据样本,如图像、文本等。

  8. 流形学习(Manifold Learning): 用于学习数据的低维流形结构,如Isomap、LLE等。

相关推荐
春末的南方城市1 分钟前
中山大学&美团&港科大提出首个音频驱动多人对话视频生成MultiTalk,输入一个音频和提示,即可生成对应唇部、音频交互视频。
人工智能·python·深度学习·计算机视觉·transformer
AI视觉网奇3 分钟前
调试快捷键 pycharm vscode
机器学习
春末的南方城市4 分钟前
Ctrl-Crash 助力交通安全:可控生成逼真车祸视频,防患于未然
人工智能·计算机视觉·自然语言处理·aigc·音视频
程序边界10 分钟前
全球人工智能技术大会(GAITC 2025):技术前沿与产业融合的深度交响
人工智能
OpenCSG18 分钟前
电子行业AI赋能软件开发经典案例——某金融软件公司
人工智能·算法·金融·开源
新加坡内哥谈技术24 分钟前
极客时间:在 Google Colab 上尝试 Prefix Tuning
人工智能
今天又学了啥29 分钟前
李飞飞World Labs开源革命性Web端3D渲染器Forge!3D高斯溅射技术首次实现全平台流畅运行
人工智能
极智视界39 分钟前
分类场景数据集大全「包含数据标注+训练脚本」 (持续原地更新)
人工智能·yolo·数据集·分类算法·数据标注·classification·分类数据集
翻滚的小@强1 小时前
自动驾驶科普(百度Apollo)学习笔记
人工智能·自动驾驶·百度apollo
从零开始学习人工智能1 小时前
从游戏到自动驾驶:互联网时代强化学习如何让机器学会自主决策?
人工智能·游戏·自动驾驶