linux内核中的offsetof、container_of、双链表list.h实践

先直接上程序,代码中包含了注释已经说清楚。在linux的应用层中编译、测试:

感谢李慧芹的B站课程:史上最强最细腻的linux嵌入式C语言学习教程【李慧芹老师】_哔哩哔哩_bilibili

cpp 复制代码
#include <stdio.h>
#include <stdlib.h>





// 下面的宏来自于: <linux/kernel.h>
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)


#define container_of(ptr, type, member) ({			\
	const typeof( ((type *)0)->member ) *__mptr = (ptr);	\
	(type *)( (char *)__mptr - offsetof(type,member) );})


// 下面的结构体定义来自于 <linux/types.h>
struct list_head {
    struct list_head 	*next;
    struct list_head  	*prev;
};

// 	下面的宏及函数摘自于 <linux/list.h>
#define list_entry(ptr, type, member) \
	container_of(ptr, type, member)
	
	
#define list_for_each(pos, head) \
	for (pos = (head)->next; pos != (head); pos = pos->next)	
	
#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name) \
	struct list_head name = LIST_HEAD_INIT(name)



void INIT_LIST_HEAD(struct list_head *list)
{
	list->next = list;
	list->prev = list;
}

// 将 new 插入到 prev 和 next 的中间
void __list_add(struct list_head *new,
			      struct list_head *prev,
			      struct list_head *next)
{
	next->prev = new;
	new->next = next;
	new->prev = prev;
	prev->next = new;
}

// 将 new 插入到 head 的后面
void list_add(struct list_head *new, struct list_head *head)
{
	__list_add(new, head, head->next);
}

// 将 new 插入到 head 的前面
void list_add_tail(struct list_head *new, struct list_head *head)
{
	__list_add(new, head->prev, head);
}

void __list_del(struct list_head * prev, struct list_head * next)
{
	next->prev = prev;
	prev->next = next;
}

void __list_del_entry(struct list_head *entry)
{
	__list_del(entry->prev, entry->next);
}

//
// 下面是业务层应用代码
//
// 应用层业务的结构体定义:
struct student
{
	int 				id;
	char 				name[128];
	int 				ch;		//语文分数
	int 				ma;		//数学分数
	int 				en;		//英语分数
	struct list_head 	list;	//包含一个 list_head
};

void print_stu(struct student *st);


int main()
{
	//
	// 0.1 测试宏 offsetof 使用
	//
	printf("id 		offset=%ld\n", offsetof(struct student, id));
	printf("name 	offset=%ld\n", offsetof(struct student, name));
	printf("ch 		offset=%ld\n", offsetof(struct student, ch));
	printf("ma 		offset=%ld\n", offsetof(struct student, ma));
	printf("en		offset=%ld\n", offsetof(struct student, en));
	printf("list	offset=%ld\n", offsetof(struct student, list));
/*	
	id              offset=0
	name    		offset=4
	ch              offset=132
	ma              offset=136
	en              offset=140
	list    		offset=144
	上面看出,宏offsetof(TYPE, MEMBER),就是返回成员MEMBER相对首的偏移!
*/

	
	// 0.2 测试宏 container_of 使用
	struct student stu={100, "std100", 78, 88, 98, NULL,};
	struct student *p=container_of(&stu.list, struct student, list);
	printf("&stu=%p\n", &stu);
	printf("&stu.list=%p\n", &stu.list);
	printf("&p=%p\n", p);
/*
	&stu=		0x7fffa2f4e1b0
	&stu.list=	0x7fffa2f4e240		0x240-0x1b0=144 即是上述list的偏移off
	&p=			0x7fffa2f4e1b0		
	上面看出,宏container_of(ptr, type, member) 即是返回结构体变量的首地址。
	那么问题来了,为何搞这么复杂的一个转换来获取首地址呢?
	直接使用&stu不就得到完了嘛!别急,看下面的应用!
*/

	int i=0;
	LIST_HEAD(head);
	//
	// 1. 创建5个结构体,使用 list 连起来
	//
	for(i=0; i<5; i++)
	{
		struct student *st=malloc(sizeof(struct student));
		sprintf(st->name, "stu%02d", i+1);
		st->id=i+1;
		st->ch=rand()%100;
		st->ma=rand()%100;
		st->en=rand()%100;
										
		printf("id=%d, name=%s, ch=%d, ma=%d, en=%d\n",
			st->id, st->name, st->ch, st->ma, st->en);
			
		list_add(&(st->list), &head); //这里每次插入到head的后面!
	}
/*
	id=1, name=stu01, ch=83, ma=86, en=77
	id=2, name=stu02, ch=15, ma=93, en=35
	id=3, name=stu03, ch=86, ma=92, en=49
	id=4, name=stu04, ch=21, ma=62, en=27
	id=5, name=stu05, ch=90, ma=59, en=63
	注意上述创建的原始顺序!
*/
	
	printf("\n");	
	
	//
	// 2. 遍历打印
	//
	struct list_head *c;
	list_for_each(c, &head)
	{
		struct student *st=container_of(c, struct student, list);
		print_stu(st);
	}
/*
	id=5, name=stu05, ch=90, ma=59, en=63
	id=4, name=stu04, ch=21, ma=62, en=27
	id=3, name=stu03, ch=86, ma=92, en=49
	id=2, name=stu02, ch=15, ma=93, en=35
	id=1, name=stu01, ch=83, ma=86, en=77
	因为是每次插入到head的后面,所以链表里面的顺序是5、4、3....
*/	

	//
	// 3. 查找一个节点
	//
	list_for_each(c, &head)
	{
		struct student *st=container_of(c, struct student, list);
		if(st->id==3)
		{
			printf("\nfind it!\n");
			print_stu(st);
		}
	}
	
	//
	// 4. 删除一个节点
	//
	list_for_each(c, &head)
	{
		struct student *st=container_of(c, struct student, list);
		if(st->id==3)
		{
			__list_del_entry(&st->list);
			free(st);
		}
	}
	
	//
	// 5. 再次输出打印
	//
	printf("\nreprintf:\n");		
	list_for_each(c, &head)
	{
		struct student *st=container_of(c, struct student, list);
		print_stu(st);
	}	
}


void print_stu(struct student *st)
{
	printf("id=%d, name=%s, ch=%d, ma=%d, en=%d\n",
		st->id, st->name, st->ch, st->ma, st->en);	
}
相关推荐
舞动CPU4 小时前
linux c/c++最高效的计时方法
linux·运维·服务器
秦jh_6 小时前
【Linux】多线程(概念,控制)
linux·运维·前端
keep__go8 小时前
Linux 批量配置互信
linux·运维·服务器·数据库·shell
矛取矛求8 小时前
Linux中给普通账户一次性提权
linux·运维·服务器
Fanstay9858 小时前
在Linux中使用Nginx和Docker进行项目部署
linux·nginx·docker
大熊程序猿8 小时前
ubuntu 安装kafka-eagle
linux·ubuntu·kafka
daizikui10 小时前
Linux文件目录命令
linux·运维·服务器
NikitaC10 小时前
ldconfig 和 LD_LIBRARY_PATH 区别
linux·c++
清源妙木真菌10 小时前
Linux:进程概念
linux