计算机竞赛YOLOv7 目标检测网络解读

文章目录

  • [0 前言](#0 前言)
  • [1 yolov7的整体结构](#1 yolov7的整体结构)
  • [2 关键点 - backbone](#2 关键点 - backbone)
  • [关键点 - head](#关键点 - head)
  • [3 训练](#3 训练)
  • [4 使用效果](#4 使用效果)
  • [5 最后](#5 最后)

0 前言

世界变化太快,YOLOv6还没用熟YOLOv7就来了,如果有同学的毕设项目想用上最新的技术,不妨看看学长的这篇文章,学长带大家简单的解读yolov7,目的是对yolov7有个基础的理解。

从 2015 年的 YOLOV1,2016 年 YOLOV2,2018 年的 YOLOV3,到2020年的 YOLOV4、 YOLOV5, 以及最近出现的

YOLOV6 和 YOLOV7 可以说 YOLO 系列见证了深度学习时代目标检测的演化。对于 YOLO 的基础知识以及 YOLOV1 到 YOLOV5

可以去看大白的 YOLO 系列,本文主要对 YOLOV7 的网络结构进行一个梳理,便于大家直观的感受。

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 yolov7的整体结构

我们先整体来看下 YOLOV7,首先对输入的图片 resize 为 640x640 大小,输入到 backbone 网络中,然后经 head

层网络输出三层不同 size 大小的 feature map ,经过 Rep 和 conv输出预测结果,这里以 coco 为例子,输出为 80

个类别,然后每个输出(x ,y, w, h, o) 即坐标位置和前后背景,3 是指的 anchor 数量,因此每一层的输出为 (80+5)x3 =

255再乘上 feature map 的大小就是最终的输出了。

2 关键点 - backbone

YOLOV7 的 backbone 如下图所示

总共有 50 层, 我在上图用黑色数字把关键层数标示出来了。首先是经过 4 层卷积层,如下图,CBS 主要是 Conv + BN + SiLU

构成,我在图中用不同的颜色表示不同的 size 和 stride, 如 (3, 2) 表示卷积核大小为 3 ,步长为 2。 在 config 中的配置如图。

经过 4个 CBS 后,特征图变为 160 * 160 * 128 大小。随后会经过论文中提出的 ELAN 模块,ELAN 由多个 CBS

构成,其输入输出特征大小保持不变,通道数在开始的两个 CBS 会有变化, 后面的几个输入通道都是和输出通道保持一致的,经过最后一个 CBS

输出为需要的通道。



MP 层 主要是分为 Maxpool 和 CBS , 其中 MP1 和 MP2 主要是通道数的比变化。

backbone的基本组件就介绍完了,我们整体来看下 backbone,经过 4 个 CBS 后,接入例如一个 ELAN ,然后后面就是三个 MP +

ELAN 的输出,对应的就是 C3/C4/C5 的输出,大小分别为 80 * 80 * 512 , 40 * 40 * 1024, 20 * 20 *

1024。 每一个 MP 由 5 层, ELAN 有 8 层, 所以整个 backbone 的层数为 4 + 8 + 13 * 3 = 51 层, 从 0

开始的话,最后一层就是第 50 层。

关键点 - head


YOLOV7 head 其实就是一个 pafpn 的结构,和之前的YOLOV4,YOLOV5 一样。首先,对于 backbone 最后输出的 32

倍降采样特征图 C5,然后经过 SPPCSP,通道数从1024变为512。先按照 top down 和 C4、C3融合,得到 P3、P4 和 P5;再按

bottom-up 去和 P4、P5 做融合。这里基本和 YOLOV5 是一样的,区别在于将 YOLOV5 中的 CSP 模块换成了 ELAN-H 模块,

同时下采样变为了 MP2 层。

ELAN-H 模块是我自己命名的,它和 backbone 中的 ELAN 稍微有点区别就是 cat 的数量不同。

3 训练

有一点比较坑,如果想使用较大的预训练模型,需要使用train_aux.py进行训练,否则效果很差

4 使用效果

丝滑!

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关推荐
西猫雷婶15 分钟前
python学opencv|读取图像(二十一)使用cv2.circle()绘制圆形进阶
开发语言·python·opencv
初晴~16 分钟前
【Redis分布式锁】高并发场景下秒杀业务的实现思路(集群模式)
java·数据库·redis·分布式·后端·spring·
老刘莱国瑞1 小时前
STM32 与 AS608 指纹模块的调试与应用
python·物联网·阿里云
黑胡子大叔的小屋1 小时前
基于springboot的海洋知识服务平台的设计与实现
java·spring boot·毕业设计
ThisIsClark1 小时前
【后端面试总结】深入解析进程和线程的区别
java·jvm·面试
一只敲代码的猪2 小时前
Llama 3 模型系列解析(一)
大数据·python·llama
雷神乐乐2 小时前
Spring学习(一)——Sping-XML
java·学习·spring
Hello_WOAIAI2 小时前
批量将 Word 文件转换为 HTML:Python 实现指南
python·html·word
winfredzhang2 小时前
使用Python开发PPT图片提取与九宫格合并工具
python·powerpoint·提取·九宫格·照片
小林coding2 小时前
阿里云 Java 后端一面,什么难度?
java·后端·mysql·spring·阿里云