人脸活体检测技术的应用,有效避免人脸识别容易被攻击的缺陷

随着软件算法和物理终端的进步,人脸识别现在越来越被广泛运用到生活的方方面面,已经成为了重要的身份验证手段,但同时也存在着自身的缺陷,目前常规人脸识别技术可以精准识别目标人像特征,并迅速返回比对结果,但未加入防御照片图像等伪造人脸的技术,无法辨别实时目标人脸的真假情况,在实际身份核验场景中,容易被人脸照片、人脸视频、3D面具等攻击行为干扰,因此如何高效抵御各类欺骗行为攻击,是人脸识别技术迫切需要解决的问题。

基于以上背景,人脸活体检测技术就走上了台前。那么,什么是人脸活体检测?简单来说,就是算法判断镜头捕捉到的人脸,究竟是真实人脸,还是伪造的人脸攻击。人脸活体检测弥补了单一人脸识别的不足,能够有效地识别照片、视频、面具等伪造人脸行为,最大程度杜绝欺诈行为的发生。

目前主流的活体检测方案分为静默式和配合式两种。

静默式活体检测无需用户进行额外动作,而是直接基于算法甄别纸张照片、屏幕成像、人脸面具等伪造人脸攻击。与配合式相比,静默式用户体验更好,速度更快,可在无感的情况下直接进行活体检测。

配合式活体检测则需要用户根据提示做出相应的动作,通过眨眼、张嘴、摇头、点头等配合式组合动作,使用人脸关键点及人脸追踪技术,通过连续的图片,计算变化距离与不变距离的比值,进行上一帧图像与下一帧图像的对比,从而验证用户是否为真实活体本人操作。

这些年,我们可以看到人脸识别在公共场所的应用,大大提高了人们办事效率,但同时也带来了人脸识别的安全隐患,尤其是在金融支付领域。因此,人脸活体检测技术的应用越来越重要。

申明:文章为本人原创,禁止转载,如有疑问请致邮:283870550@qq.com

相关推荐
kyle~6 分钟前
OpenCV---特征检测算法(ORB,Oriented FAST and Rotated BRIEF)
人工智能·opencv·算法
小五12714 分钟前
机器学习(决策树)
人工智能·决策树·机器学习
没有不重的名么22 分钟前
Tmux Xftp及Xshell的服务器使用方法
服务器·人工智能·深度学习·机器学习·ssh
wayman_he_何大民40 分钟前
初识机器学习算法 - AUM时间序列分析
前端·人工智能
什么都想学的阿超2 小时前
【大语言模型 00】导读
人工智能·语言模型·自然语言处理
lxmyzzs2 小时前
【图像算法 - 16】庖丁解牛:基于YOLO12与OpenCV的车辆部件级实例分割实战(附完整代码)
人工智能·深度学习·opencv·算法·yolo·计算机视觉·实例分割
明心知2 小时前
DAY 45 Tensorboard使用介绍
人工智能·深度学习
维维180-3121-14552 小时前
AI大模型+Meta分析:助力发表高水平SCI论文
人工智能·meta分析·医学·地学
程序员陆通2 小时前
CloudBase AI ToolKit + VSCode Copilot:打造高效智能云端开发新体验
人工智能·vscode·copilot
程高兴2 小时前
遗传算法求解冷链路径优化问题matlab代码
开发语言·人工智能·matlab