数据仓库DW-理论知识储备

数据仓库DW

数据仓库具备 采集数据、分析数据、存储数据的功能,最后得出一些有用的数据,一些目标数据来使用。

采集来自不同源的数据,然后对这些数据进行分析和计算得出一些有用的指标,提供数据决策支持。

数据的来源有:系统的业务数据、用户的行为数据、爬虫数据等。

数据仓库包含:实时数据仓库、离线数据仓库。

数仓分层

数据仓库中的数据一般经过一下几层处理:参考来自

1.ODS

ODS主要完成:

(1)保持数据原貌不做任何修改,保留历史数据,储存起到备份数据作用,采集过来是什么数据就存储什么数据;

(2)数据一般采用lzo、Snappy、parquet等压缩格式;

(3)创建分区表,防止后续的全表扫描,减少集群资源访问数仓的压力,一般按天存储在数仓中。

2.DWD

DWD主要完成:

  1. 数据清洗

(1)去除空值、脏数据、超过极限范围的数据。

(2)过滤核心字段无意义的数据,比如订单表中订单 id 为 null,支付表中支付 id 为空

(3)将用户行为宽表和业务表进行数据一致性处理

清洗的手段包括Sql、mr、rdd、kettle、Python等等。清洗掉数据不能太多也不能很少。合理范围:1 万条数据清洗掉 1 条。

  1. 脱敏

对手机号(181****7089)、身份证号等敏感数据脱敏

  1. 维度退化

对业务数据传过来的表进行维度退化和降维。(商品一级二级三级、省市县、年月日)

  1. 压缩

LZO,列式存储 parquet

3.DWS

以DWD为基础,进行轻度的汇总。预聚合。

DWS层就是关于各个主题的加工和使用,这层是宽表聚合值,是各个事实表的聚合值。这里做轻度的汇总会让以后的计算更加的高效,如:统计各个主题对象计算7天、30天、90天的行为, 应对特殊需求(例如,购买行为,统计商品复购率)会快很多不必走ODS层反复拿数据做加工。

这层会把每个用户单日的行为聚合起来组成一张多列宽表,以便之后关联用户维度信息后进行,不同角度的统计分析。

涉及的主题包括:访客主题、用户主题、商品主题、优惠券主题、活动主题、地区主题等

4.DWT

这层涉及的主题和DWS层一样包括:访客主题、用户主题、商品主题、优惠券主题、活动主题、地区主题等。只不过DWS层的粒度是对当日用户汇总信息,而DWT层是对截止到当日、或者近7日、近30日等的汇总信息。

以用户主题这个来举列:

*DWS层:用户主题层是记录某一个用户在某一天的汇总行为。

*DWT层:用户主题层是记录某一个用户截止在当日的汇总行为。

5.ADS

统计指标。

ADS层数据是专门给业务使用的数据层,这层是面向业务定制的应用数据层。

ADS主要完成:

(1)提供为数据产品使用的结果数据、指标等。

(2)提供给数据产品和数据分析使用的数据,一般会存放在 ES、MySQL等系统中供线上系统使用,也可能会存在 Hive 或者 Druid 中供数据分析和数据挖掘使用。如报表数据,或者说那种大宽表。

这个项目中ADS层也是包含有多个主题:设备主题、会员主题、商品主题、营销主题、地区主题、访客主题、用户主题、订单主题、优惠券主题、活动主题等等。每个主题都包含多个指标的计算。

离线数仓

通常是批处理数据,一般一天处理一次,所以是批处理数据量大,处理时间长

离线数仓架构参考图

业务数据存储在MySQL,用户行为数据存储在日志文件中。这两个数据源都要先采集进来然后进行分析计算等,因为数据量会比较大,所以采用Hadoop的HDFS存储。

业务数据在MySQL中,由于是离线数仓,所以每天进行全量同步一次数据到HDFS中即可,这边我也不知道为啥还要进行增量同步到kafka中,然后由消费者发送给HDFS存储。

日志文件由flume监控采集,又因为日志文件比较大,如果flume采集完就直接发送给HDFS效率不好,所以flume采集完先发送给kafka的主题中,接着flume消费者订阅这个主题,消费日志文件发送给HDFS存储,kafka消息队列在这起消峰的作用。

经过上面的步骤后,数据就全部来到了HDFS中供使用。数据经过ODS、DWD、DWS、ADS层层处理产生想要的结果后,数据处理经过这些层,这些层总要有先后,定时任务调度的作用就是:如果数据在ODS处理好了,就可以自动进入到下一层DWD继续处理。层层处理后的想要结果由DataX将结果每日同步到MySQL中方便进行后续的使用,比如Superset可视化展示。

实时数仓

数据源源不断的来,流式处理数据,处理时间较短。

实时数仓用来处理那些实时性高的数据。

实时数仓架构参考图

实时的话,创建flink消费者从kafka中取出数据,那我就理解了为啥业务数据也要增量同步发给kafka了,因为实时处理需要,所以kafka就是ods层,flink进行简单处理后发送给DWD层。

flume采集文件案例

以下的架构就是一个实时数仓的简单架构,flume一直监控数据文件,只要一有文件来,就会被flume采集然后发给kafka主题,接着就会被flink消费。

用户行为数据:用户在使用产品过程中,通过埋点收集与客户端产品交互过程中产生的数据,并发往日志服务器进行保存。比如页面浏览、点击、停留、评论、点赞、收藏等。由于用户的行为数据比较多,所以用户行为数据通常存储在日志文件中。

在flume的家目录中,采集一个job文件夹存放flume的配置文件,file_to_kafka.conf:

bash 复制代码
a1.sources = r1
a1.channels = c1

#配置source
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /mydata/spoolingDir

#配置channel         org.apache.flume.channel.kafka.KafkaChannel
a1.channels.c1.type = org.apache.flume.channel.kafka.KafkaChannel
a1.channels.c1.kafka.bootstrap.servers = 192.168.10.128:9092
a1.channels.c1.kafka.topic = topic_log
a1.channels.c1.parseAsFlumeEvent = false

#组装 
a1.sources.r1.channels = c1

启动:

bash 复制代码
bin/flume-ng agent -n a1 -c conf/ -f job/file_to_kafka.conf -Dflume.root.logger=info,console
  • bin/flume-ng:这是启动 Flume 的可执行文件。
  • agent:指定要运行的 Flume 组件类型,这里是代理(agent)。
  • -n a1:指定代理的名称,这里是 "a1"。
  • -c conf/:指定配置文件的目录,Flume 会在该目录下查找配置文件。
  • -f job/file_to_kafka.conf:指定要使用的配置文件的路径,这是 Flume 的配置文件,它描述了数据传输的配置。
  • -Dflume.root.logger=info,console:设置 Flume 的日志级别和输出方式。在此设置中,日志级别为 "info",并将日志输出到控制台。

数仓技术选型

数据采集:如果数据是以文件形式存在可以使用flume监控采集,MySQL中的数据可以使用DataX采集

数据存储:数据量比较小可以用MySQL存储,数据量大用HDFS

数据计算:实时性要求高用flink流式处理

相关推荐
哲讯智能科技3 小时前
SAP环保-装备制造领域创新解决方案
大数据
钡铼技术物联网关3 小时前
Ubuntu工控卫士在制造企业中的应用案例
大数据·人工智能·物联网·边缘计算
闯闯桑4 小时前
scala 中的@BeanProperty
大数据·开发语言·scala
闯闯桑4 小时前
Scala 中的隐式转换
大数据·scala
用户Taobaoapi20146 小时前
淘宝商品列表查询 API 接口详解
大数据
涛思数据(TDengine)7 小时前
taosd 写入与查询场景下压缩解压及加密解密的 CPU 占用分析
大数据·数据库·时序数据库·tdengine
DuDuTalk7 小时前
DuDuTalk接入DeepSeek,重构企业沟通数字化新范式
大数据·人工智能
大数据追光猿7 小时前
Qwen 模型与 LlamaFactory 结合训练详细步骤教程
大数据·人工智能·深度学习·计算机视觉·语言模型
Elastic 中国社区官方博客8 小时前
使用 Elastic-Agent 或 Beats 将 Journald 中的 syslog 和 auth 日志导入 Elastic Stack
大数据·linux·服务器·elasticsearch·搜索引擎·信息可视化·debian
对许9 小时前
Hadoop的运行模式
大数据·hadoop·分布式