milvus和相似度检索

流程

milvus的使用流程是 创建collection -> 创建partition -> 创建索引(如果需要检索) -> 插入数据 -> 检索

这里以Python为例, 使用的milvus版本为2.3.x

首先按照库, python3 -m pip install pymilvus

Connect

py 复制代码
from pymilvus import connections
connections.connect(
  alias="default",
  user='username',
  password='password',
  host='localhost',
  port='19530'
)


connections.list_connections()
connections.get_connection_addr('default')

connections.disconnect("default")

以上是源码,可以看出alias只是一个字典的映射的key

通过源码可以看到,还有两种连接方式:

  1. 在.env文件中添加参数,MILVUS_URI=milvus://<Your_Host>:<Your_Port>,之后可以使用connections.connect()连接
  2. 在一次连接成功后,将连接配置数据保存在内存,下次近执行connections.connect()即可连接,可以通过connections.remove_connection删除连接配置数据

Database

py 复制代码
from pymilvus import connections, db

conn = connections.connect(host="127.0.0.1", port=19530)

database = db.create_database("book")

db.using_database("book") # 切换数据库
db.list_database()
db.drop_database("book")

Collection

和一些非关系型数据库(MongoDB)类似,Collection就是表

py 复制代码
# collection
from pymilvus import Collection, CollectionSchema, FieldSchema, DataType, utility

## 需要提前创建列的名称、类型等数据,并且必须添加一个主键
book_id = FieldSchema(
  name="book_id",
  dtype=DataType.INT64,
  is_primary=True,
)
book_name = FieldSchema(
  name="book_name",
  dtype=DataType.VARCHAR,
  max_length=200,
  # The default value will be used if this field is left empty during data inserts or upserts.
  # The data type of `default_value` must be the same as that specified in `dtype`.
  default_value="Unknown"
)
word_count = FieldSchema(
  name="word_count",
  dtype=DataType.INT64,
  # The default value will be used if this field is left empty during data inserts or upserts.
  # The data type of `default_value` must be the same as that specified in `dtype`.
  default_value=9999
)
book_intro = FieldSchema(
  name="book_intro",
  dtype=DataType.FLOAT_VECTOR,
  dim=2
)
# dim=2是向量的维度

schema = CollectionSchema(
  fields=[book_id, book_name, word_count, book_intro],
  description="Test book search",
  enable_dynamic_field=True
)


collection_name = "book"

collection = Collection(
    name=collection_name,
    schema=schema,
    using='default',
    shards_num=2
    )

utility.rename_collection("book", "lights4") 
utility.has_collection("lights1")
utility.list_collections()
# utility.drop_collection("lights")

collection = Collection("lights3")      
collection.load(replica_number=2)
# reduce memory usage
collection.release()

Partition

py 复制代码
# Create a Partition

collection = Collection("book")      # Get an existing collection.
collection.create_partition("novel")

Index

milvus的索引决定了搜索所用的算法,必须设置好所引才能进行搜索。

py 复制代码
# Index
index_params = {
  "metric_type":"L2",
  "index_type":"IVF_FLAT",
  "params":{"nlist":1024}
}

collection.create_index(
  field_name="book_intro", 
  index_params=index_params
)

## metric_type是相似性计算算法,可选的有以下
## For floating point vectors:
## L2 (Euclidean distance)
## IP (Inner product)
## COSINE (Cosine similarity)
## For binary vectors:
## JACCARD (Jaccard distance)
## HAMMING (Hamming distance)
utility.index_building_progress("<Your_Collection>")

Data

数据可以从dataFrame来,也可以从其他方式获得,只要列名对上,即可。

py 复制代码
import pandas as pd
import numpy as np

insert_data = pd.read_csv("<Your_File>")
mr = collection.insert(insert_data)
py 复制代码
# search
search_params = {
    "metric_type": "L2", 
    "offset": 5, 
    "ignore_growing": False, 
    "params": {"nprobe": 10}
}

results = collection.search(
    data=[[0.1, 0.2]], 
    anns_field="book_intro", 
    # the sum of `offset` in `param` and `limit` 
    # should be less than 16384.
    param=search_params,
    limit=10,
    expr=None,
    # 这里需要将想看的列名列举出来
    output_fields=['title'],
    consistency_level="Strong"
)

# get the IDs of all returned hits
results[0].ids

# get the distances to the query vector from all returned hits
results[0].distances

# get the value of an output field specified in the search request.
hit = results[0][0]
hit.entity.get('title')

具体的代码在我的github。希望对你有所帮助!

相关推荐
.Eyes1 小时前
OceanBase 分区裁剪(Partition Pruning)原理解读
数据库·oceanbase
MrZhangBaby2 小时前
SQL-leetcode— 2356. 每位教师所教授的科目种类的数量
数据库
一水鉴天2 小时前
整体设计 之定稿 “凝聚式中心点”原型 --整除:智能合约和DBMS的在表层挂接 能/所 依据的深层套接 之2
数据库·人工智能·智能合约
翔云1234563 小时前
Python 中 SQLAlchemy 和 MySQLdb 的关系
数据库·python·mysql
孙霸天3 小时前
Ubuntu20系统上离线安装MongoDB
数据库·mongodb·ubuntu·备份还原
Java 码农3 小时前
nodejs mongodb基础
数据库·mongodb·node.js
TDengine (老段)3 小时前
TDengine IDMP 运维指南(4. 使用 Docker 部署)
运维·数据库·物联网·docker·时序数据库·tdengine·涛思数据
TDengine (老段)3 小时前
TDengine IDMP 最佳实践
大数据·数据库·物联网·ai·时序数据库·tdengine·涛思数据
彬彬醤4 小时前
Mac怎么连接VPS?可以参考这几种方法
大数据·运维·服务器·数据库·线性代数·macos·矩阵
废喵喵呜4 小时前
达梦数据库-实时主备集群部署详解(附图文)手工搭建一主一备数据守护集群DW
网络·数据库·tcp/ip