TDengine IDMP 最佳实践

最佳实践

IDMP 提供了一强大的数据建模能力,让数据标准化、情景化,从而可以更好地利用 AI 技术,从数据中挖掘出业务价值,但数据建模本身是一个很难用 AI 完成的事情。

为最大程度减少建模的成本,TDengine 推荐在数据源侧做好最基础的数据治理工作。有几条建议:

  1. 每个采集量的名字要规范命名,全局统一
  2. 对于同时采集的物理量,因为共享时间戳,尽可能采用多列模型
  3. 对于每一个数据采集点,无论是单列还是多列,配置好层次结构,作为元数据,发送给 TDengine TSDB-Enterprise。比如:工厂-1.产线-A.设备-X

TDengine TSDB-Enterprise 里的 taosX 模块,在读取这些采集的数据时,能自动创建超级表和子表,做数据的转换,并可以添加更多的标签,把设备的层次结构信息保存起来。IDMP 就能依据 TSDB 里的元数据,自动构建出树状层次结构,自动创建出元素模版和元素。

对于 PLC 采集的数据,因为是单列模型,而一个设备往往拥有多个采集量,需要将多个采集量组装到一个设备下面,这个组装只能在 IDMP 里完成,可以参考 数据导入导出-TSDB 资产模型 章节进行。

一旦树状层次结构模型在 IDMP 里建立起来,您可以通过元素、属性等模版补充更多的描述信息和业务语义,提供更好的数据情景,让整个数据平台 AI-Ready,这样便于更好的发挥 AI 的作用。

下面我们选取了不同行业的典型应用场景,来说明如何使用 TDengine IDMP, 供您参考:

  1. TDengine IDMP 应用场景:微电网监控
  2. TDengine IDMP 应用场景:烟草制丝
  3. TDengine IDMP 应用场景:工业锅炉监控

关于 TDengine

TDengine 专为物联网IoT平台、工业大数据平台设计。其中,TDengine TSDB 是一款高性能、分布式的时序数据库(Time Series Database),同时它还带有内建的缓存、流式计算、数据订阅等系统功能;TDengine IDMP 是一款AI原生工业数据管理平台,它通过树状层次结构建立数据目录,对数据进行标准化、情景化,并通过 AI 提供实时分析、可视化、事件管理与报警等功能。

相关推荐
深思慎考几秒前
ElasticSearch与Kibana 入门指南(7.x版本)
大数据·elasticsearch·jenkins
AAA修煤气灶刘哥14 分钟前
服务器指标多到“洪水泛滥”?试试InfluxDB?
数据库·后端·面试
银行数字化转型导师坚鹏34 分钟前
如何设计优秀的企业微信私域运营实战培训方案
大数据·python·企业微信
阿沁QWQ34 分钟前
MySQL服务器配置与管理
服务器·数据库·mysql
悠闲蜗牛�1 小时前
人工智能时代下的全栈开发:整合AI、大数据与云原生的实践策略
大数据·人工智能·云原生
程序新视界2 小时前
MySQL“索引失效”的隐形杀手:隐式类型转换,你了解多少?
数据库·mysql·dba
Logintern092 小时前
windows如何设置mongodb的副本集
数据库·windows·mongodb
ml魔力信息2 小时前
活体检测与防伪技术的安全与隐私分析
大数据·人工智能·安全·隐私保护·生物识别·活体检测
数据要素X3 小时前
寻梦数据空间 | 架构篇:从概念到落地的技术实践与突破性创新
大数据·运维·数据仓库·微服务·数据治理·数据中台·可信数据空间
RestCloud4 小时前
在制造业数字化转型浪潮中,数据已成为核心生产要素。然而,系统割裂、数据滞后、开发运维成本高等问题,却像顽固的 “数据枷锁”,阻碍着企业发展。ETLCloud与
数据库·postgresql