TDengine IDMP 最佳实践

最佳实践

IDMP 提供了一强大的数据建模能力,让数据标准化、情景化,从而可以更好地利用 AI 技术,从数据中挖掘出业务价值,但数据建模本身是一个很难用 AI 完成的事情。

为最大程度减少建模的成本,TDengine 推荐在数据源侧做好最基础的数据治理工作。有几条建议:

  1. 每个采集量的名字要规范命名,全局统一
  2. 对于同时采集的物理量,因为共享时间戳,尽可能采用多列模型
  3. 对于每一个数据采集点,无论是单列还是多列,配置好层次结构,作为元数据,发送给 TDengine TSDB-Enterprise。比如:工厂-1.产线-A.设备-X

TDengine TSDB-Enterprise 里的 taosX 模块,在读取这些采集的数据时,能自动创建超级表和子表,做数据的转换,并可以添加更多的标签,把设备的层次结构信息保存起来。IDMP 就能依据 TSDB 里的元数据,自动构建出树状层次结构,自动创建出元素模版和元素。

对于 PLC 采集的数据,因为是单列模型,而一个设备往往拥有多个采集量,需要将多个采集量组装到一个设备下面,这个组装只能在 IDMP 里完成,可以参考 数据导入导出-TSDB 资产模型 章节进行。

一旦树状层次结构模型在 IDMP 里建立起来,您可以通过元素、属性等模版补充更多的描述信息和业务语义,提供更好的数据情景,让整个数据平台 AI-Ready,这样便于更好的发挥 AI 的作用。

下面我们选取了不同行业的典型应用场景,来说明如何使用 TDengine IDMP, 供您参考:

  1. TDengine IDMP 应用场景:微电网监控
  2. TDengine IDMP 应用场景:烟草制丝
  3. TDengine IDMP 应用场景:工业锅炉监控

关于 TDengine

TDengine 专为物联网IoT平台、工业大数据平台设计。其中,TDengine TSDB 是一款高性能、分布式的时序数据库(Time Series Database),同时它还带有内建的缓存、流式计算、数据订阅等系统功能;TDengine IDMP 是一款AI原生工业数据管理平台,它通过树状层次结构建立数据目录,对数据进行标准化、情景化,并通过 AI 提供实时分析、可视化、事件管理与报警等功能。

相关推荐
Jackyzhe17 分钟前
Flink源码阅读:JobManager的HA机制
大数据·flink
鲨莎分不晴20 分钟前
大数据基石深度解析:系统性读懂 Hadoop 与 ZooKeeper
大数据·hadoop·zookeeper
想摆烂的不会研究的研究生6 小时前
每日八股——Redis(1)
数据库·经验分享·redis·后端·缓存
码熔burning7 小时前
MySQL 8.0 新特性爆笑盘点:从青铜到王者的骚操作都在这儿了!(万字详解,建议收藏)
数据库·mysql
猫头虎7 小时前
2025最新OpenEuler系统安装MySQL的详细教程
linux·服务器·数据库·sql·mysql·macos·openeuler
Sylvan Ding7 小时前
度量空间数据管理与分析系统——大数据泛构课程作业-2025~2026学年. 毛睿
大数据·深圳大学·大数据泛构·度量空间数据管理与分析系统·毛睿·北京理工大学珠海校区
Learn Beyond Limits7 小时前
解构语义:从词向量到神经分类|Decoding Semantics: Word Vectors and Neural Classification
人工智能·算法·机器学习·ai·分类·数据挖掘·nlp
哈库纳玛塔塔7 小时前
放弃 MyBatis,拥抱新一代 Java 数据访问库
java·开发语言·数据库·mybatis·orm·dbvisitor
哥布林学者8 小时前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (六)长短期记忆 LSTM
深度学习·ai
@LetsTGBot搜索引擎机器人8 小时前
2025 Telegram 最新免费社工库机器人(LetsTG可[特殊字符])搭建指南(含 Python 脚本)
数据库·搜索引擎·机器人·开源·全文检索·facebook·twitter