ExcelBDD Python指南

在Python里面支持BDD

Excel BDD Tool Specification By ExcelBDD Method

This tool is to get BDD test data from an excel file, its requirement specification is below

The Essential of this approach is obtaining multiple sets of test data, so when combined with Excel's Sheet, the key parameters are:

  1. ExcelFileName, required, which excel file is used.
  2. SheetName, optional, which Sheet the requirement writer writes in, if not specified, 1st sheet is chosen. An Excel file supports multiple Sheets, so an Excel is sufficient to support a wide range, such as Epic, Release, or a module.
  3. HeaderMatcher, filter the header row by this matcher, if matched, this set will be collected in.
  4. HeaderUnmatcher, filter the header row by this matcher, if matched, this set will be excluded.

Once the header row and parameter name column are determined by 'Parameter Name' grid automatically, the data area is determined, such as the green area in the table above. The gray area of the table above is the story step description, which is the general requirements step.

Install ExcelBDD Python Edition

pip install excelbdd

API

behavior.get_example_list

get_example_list(excelFile, sheetName = None, headerMatcher = None, headerUnmatcher = None)

  1. excelFile: excel file path and name, relative or absolute
  2. sheetName: sheet name, optional, default is the first sheet in excel file
  3. HeaderMatcher: filter the header row by this matcher, if matched, this set will be collected in. optional, default is to select all.
  4. HeaderUnmatcher: filter the header row by this matcher, if matched, this set will be excluded. optional, default is to exclude none.

behavior.get_example_table

get_example_table(excelFile,sheetName = None,headerRow = 1,startColumn = 'A')

  1. excelFile: excel file path and name, relative or absolute
  2. sheetName: sheet name, optional, default is the first sheet in excel file
  3. headerRow: the number of header row, optional, default is 1
  4. startColumn: the char of first data area, optional, default is column A in sheet

Simple example code

The Famouse FizzBuzz kata is described in excelbdd format, as below.

复制代码
import pytest
from excelbdd.behavior import get_example_list
import FizzBuzz

excelBDDFile = "path of excel file" 
@pytest.mark.parametrize("HeaderName, Number1, Output1, Number2, Output2, Number3, Output3, Number4, Output4",
                        get_example_list(excelBDDFile,"FizzBuzz"))
def test_FizzBuzz(HeaderName, Number1, Output1, Number2, Output2, Number3, Output3, Number4, Output4):
    assert FizzBuzz.handle(Number1) == Output1
    assert FizzBuzz.handle(Number2) == Output2
    assert FizzBuzz.handle(Number3) == Output3
    assert FizzBuzz.handle(Number4) == Output4

Input vs Expect + Test Result Format - SBT - Specification By Testcase

testcase example is below, which uses headerMatcher to filter the data

复制代码
@pytest.mark.parametrize("HeaderName, ParamName1, ParamName1Expected, ParamName1TestResult, \
                         ParamName2, ParamName2Expected, ParamName2TestResult, ParamName3, \
                         ParamName3Expected, ParamName3TestResult, ParamName4, ParamName4Expected, \
                         ParamName4TestResult",
                        get_example_list(bddFile1, "SBTSheet1","Scenario"))
def test_excelbdd_sbt(HeaderName, ParamName1, ParamName1Expected, ParamName1TestResult, 
                      ParamName2, ParamName2Expected, ParamName2TestResult, ParamName3, 
                      ParamName3Expected, ParamName3TestResult, ParamName4, ParamName4Expected, 
                      ParamName4TestResult):
    print(HeaderName, ParamName1, ParamName1Expected, ParamName1TestResult, 
                      ParamName2, ParamName2Expected, ParamName2TestResult, ParamName3, 
                      ParamName3Expected, ParamName3TestResult, ParamName4, ParamName4Expected, 
                      ParamName4TestResult)
    # add test data are loaded into the above parameters, add test code below

ExcelBDD can detect 3 parameter-header patterns automatically, the last one is below.

Input vs Expected

The demo code is below

复制代码
@pytest.mark.parametrize("HeaderName, ParamName1, ParamName1Expected,  \
                         ParamName2, ParamName2Expected, ParamName3, \
                         ParamName3Expected, ParamName4, ParamName4Expected"
                        get_example_list(bddFile1, "SBTSheet1","Scenario"))
def test_excelbdd_sbt(HeaderName, ParamName1, ParamName1Expected,  
                      ParamName2, ParamName2Expected, ParamName3, 
                      ParamName3Expected, ParamName4, ParamName4Expected):
    print(HeaderName, ParamName1, ParamName1Expected, 
                      ParamName2, ParamName2Expected,  ParamName3, 
                      ParamName3Expected, ParamName4, ParamName4Expected)
    # add test data are loaded into the above parameters, add test code below

Get Table

The test data are organized in normal table, as below.

the below code show how to fetch the test data into testcase

复制代码
from excelbdd.behavior import get_example_table

@pytest.mark.parametrize("Header01, Header02, Header03, Header04, Header05, Header06, Header07, Header08",
                         get_example_table(tableFile, "DataTable4"))
def test_get_example_tableB(Header01, Header02, Header03, Header04, Header05, Header06, Header07, Header08):
    print(Header01, Header02, Header03, Header04, Header05, Header06, Header07, Header08)   
    # add test data are loaded into the above parameters, add test code below

ExcelBDD Python指南线上版维护在ExcelBDD Python Guideline

ExcelBDD开源项目位于 ExcelBDD Homepagehttps://dev.azure.com/simplopen/ExcelBDD

相关推荐
玩电脑的辣条哥43 分钟前
一台服务器已经有个python3.11版本了,如何手动安装 Python 3.10,两个版本共存
服务器·python·python3.11
weixin_307779131 小时前
PySpark实现ABC_manage_channel逻辑
开发语言·python·spark
海天一色y2 小时前
Pycharm(十六)面向对象进阶
ide·python·pycharm
??? Meggie2 小时前
【Python】保持Selenium稳定爬取的方法(防检测策略)
开发语言·python·selenium
XIE3923 小时前
Browser-use使用教程
python
酷爱码4 小时前
如何通过python连接hive,并对里面的表进行增删改查操作
开发语言·hive·python
画个大饼4 小时前
Go语言实战:快速搭建完整的用户认证系统
开发语言·后端·golang
蹦蹦跳跳真可爱5894 小时前
Python----深度学习(基于深度学习Pytroch簇分类,圆环分类,月牙分类)
人工智能·pytorch·python·深度学习·分类
喵先生!5 小时前
C++中的vector和list的区别与适用场景
开发语言·c++
Thomas_YXQ5 小时前
Unity3D Lua集成技术指南
java·开发语言·驱动开发·junit·全文检索·lua·unity3d