Reasoning with Language Model Prompting: A Survey

本文是LLM系列的文章,针对《Reasoning with Language Model Prompting: A Survey》的翻译。

语言模型提示推理:综述

  • 摘要
  • [1 引言](#1 引言)
  • [2 前言](#2 前言)
  • [3 方法分类](#3 方法分类)
  • [4 比较和讨论](#4 比较和讨论)
  • [5 基准与资源](#5 基准与资源)
  • [6 未来方向](#6 未来方向)
  • [7 结论与视角](#7 结论与视角)

摘要

推理作为解决复杂问题的基本能力,可以为各种现实应用提供后端支持,如医疗诊断、协商等。本文对语言模型提示推理的前沿研究进行了综述。我们以比较和总结的方式介绍研究工作,并提供系统的资源帮助初学者。我们还讨论了这种推理能力出现的潜在原因,并强调了未来的研究方向。

1 引言

2 前言

3 方法分类

4 比较和讨论

5 基准与资源

6 未来方向

7 结论与视角

本文对基于语言模型提示的推理进行了综述,包括全面的比较和几个研究方向。在未来,我们设想在NLP和其他领域的方法之间有一个更有效的协同作用,并希望复杂和高效的LM提示模型将越来越多地有助于提高推理性能。

相关推荐
yzx991013几秒前
当AI握住方向盘:智能驾驶如何重新定义出行未来
人工智能
Sui_Network26 分钟前
备受期待的 POP 射击游戏 XOCIETY 正式在 Epic Games Store 开启体验
人工智能·游戏·rpc·区块链·量子计算·graphql
漫长的~以后39 分钟前
GPT-5.2深度拆解:多档位自适应架构如何重塑AI推理效率
人工智能·gpt·架构
爱笑的眼睛1144 分钟前
自动机器学习组件的深度解析:超越AutoML框架的底层架构
java·人工智能·python·ai
LCG米1 小时前
嵌入式Python工业环境监测实战:MicroPython读取多传感器数据
开发语言·人工智能·python
努力的BigJiang1 小时前
Cube-slam复现及报错解决
人工智能
ComputerInBook1 小时前
代数基本概念理解——特征向量和特征值
人工智能·算法·机器学习·线性变换·特征值·特征向量
漫长的~以后2 小时前
Edge TPU LiteRT V2拆解:1GB内存设备也能流畅跑AI的底层逻辑
前端·人工智能·edge
星火10242 小时前
“重生”之我用 Solo 写了一盘中国象棋
人工智能·ai编程
祝余Eleanor2 小时前
Day37 模型可视化与推理
人工智能·python·深度学习