Hudi第四章:集成Hive

系列文章目录

Hudi第一章:编译安装
Hudi第二章:集成Spark
Hudi第二章:集成Spark(二)
Hudi第三章:集成Flink

Hudi第四章:集成Hive


文章目录


前言

本来关于Flink还有一些内容,但剩下的我了解过之后,觉得并不是很常用,而且 比较杂,所以还是决定需要的时候再学习吧。


一、环境准备

1.拷贝jar包

bash 复制代码
cp /opt/software/hudi-0.12.0/packaging/hudi-hadoop-mr-bundle/target/hudi-hadoop-mr-bundle-0.12.0.jar /opt/module/hive/lib/
cp /opt/software/hudi-0.12.0/packaging/hudi-hive-sync-bundle/target/hudi-hive-sync-bundle-0.12.0.jar /opt/module/hive/lib/

启动hive

二、Flink集成hive

1.配置模版

bash 复制代码
## hms mode 配置

CREATE TABLE t1(
  uuid VARCHAR(20),
  name VARCHAR(10),
  age INT,
  ts TIMESTAMP(3),
  `partition` VARCHAR(20)
)
PARTITIONED BY (`partition`)
with(
  'connector'='hudi',
  'path' = 'hdfs://xxx.xxx.xxx.xxx:9000/t1',
  'table.type'='COPY_ON_WRITE',        -- MERGE_ON_READ方式在没生成 parquet 文件前,hive不会有输出
  'hive_sync.enable'='true',           -- required,开启hive同步功能
  'hive_sync.table'='${hive_table}',              -- required, hive 新建的表名
  'hive_sync.db'='${hive_db}',             -- required, hive 新建的数据库名
  'hive_sync.mode' = 'hms',            -- required, 将hive sync mode设置为hms, 默认jdbc
  'hive_sync.metastore.uris' = 'thrift://ip:9083' -- required, metastore的端口
);

2.案例实操

在flinksql客户端中执行。

bash 复制代码
CREATE TABLE t10(
  id int,
  num int,
  ts int,
  primary key (id) not enforced
)
PARTITIONED BY (num)
with(
  'connector'='hudi',
  'path' = 'hdfs://hadoop102:8020/tmp/hudi_flink/t10',
  'table.type'='COPY_ON_WRITE', 
  'hive_sync.enable'='true', 
  'hive_sync.table'='h10', 
  'hive_sync.db'='default', 
  'hive_sync.mode' = 'hms',
  'hive_sync.metastore.uris' = 'thrift://hadoop102:9083'
);

然后随便插入一条数据。

bash 复制代码
insert into t10 values(1,1,1); 

然后我们新开一个窗口,用客户端连接hive,也可以用其它可视化连接器。

bin/beeline -u jdbc:hive2://hadoop102:10000 -n atguigu

可以看到这里已经有一张表同步过来了

三、spark集成hive

1.配置模版

bash 复制代码
  option("hoodie.datasource.hive_sync.enable","true").                         //设置数据集注册并同步到hive
  option("hoodie.datasource.hive_sync.mode","hms").                         //使用hms
  option("hoodie.datasource.hive_sync.metastore.uris", "thrift://ip:9083"). //hivemetastore地址
  option("hoodie.datasource.hive_sync.username","").                          //登入hiveserver2的用户
  option("hoodie.datasource.hive_sync.password","").                      //登入hiveserver2的密码
  option("hoodie.datasource.hive_sync.database", "").                   //设置hudi与hive同步的数据库
  option("hoodie.datasource.hive_sync.table", "").                        //设置hudi与hive同步的表名
  option("hoodie.datasource.hive_sync.partition_fields", "").               //hive表同步的分区列
  option("hoodie.datasource.hive_sync.partition_extractor_class", "org.apache.hudi.hive.MultiPartKeysValueExtractor"). // 分区提取器 按/ 提取分区

2.案例实操

打开shell后输入以下内容

bash 复制代码
import org.apache.hudi.QuickstartUtils._
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceReadOptions._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.config.HoodieWriteConfig._

val tableName = "hudi_trips_cow"
val basePath = "file:///tmp/hudi_trips_cow"
val dataGen = new DataGenerator

val inserts = convertToStringList(dataGen.generateInserts(10))
val df = spark.read.json(spark.sparkContext.parallelize(inserts, 2))
        .withColumn("a",split(col("partitionpath"),"\\/")(0))
        .withColumn("b",split(col("partitionpath"),"\\/")(1))
        .withColumn("c",split(col("partitionpath"),"\\/")(2))
df.write.format("hudi").
  options(getQuickstartWriteConfigs).
  option(PRECOMBINE_FIELD_OPT_KEY, "ts").
  option(RECORDKEY_FIELD_OPT_KEY, "uuid").
  option("hoodie.table.name", tableName). 
  option("hoodie.datasource.hive_sync.enable","true").
  option("hoodie.datasource.hive_sync.mode","hms").
  option("hoodie.datasource.hive_sync.metastore.uris", "thrift://hadoop102:9083").
  option("hoodie.datasource.hive_sync.database", "default").
  option("hoodie.datasource.hive_sync.table", "spark_hudi").
  option("hoodie.datasource.hive_sync.partition_fields", "a,b,c").
  option("hoodie.datasource.hive_sync.partition_extractor_class", "org.apache.hudi.hive.MultiPartKeysValueExtractor").
  mode(Overwrite).
  save(basePath)

之后再次去hive查看

四、使用catalog

1.环境配置

需要的jar包。

https://repo.maven.apache.org/maven2/org/apache/flink/flink-sql-connector-hive-3.1.2_2.12/1.13.6/flink-sql-connector-hive-3.1.2_2.12-1.13.6.jar

下载之后需要修改,用压缩软件打开。

将其删除。

然后将整个jar包上传到flink的lib目录下。

2.案例实操

我们这里使用flink进行操作,由于flink是静态加载,所以我们需要从其session。

现在我们默认只有一个catalog

我们创建一个hive的catalog用于和hive连接。

bash 复制代码
CREATE CATALOG hive_catalog
  WITH (
    'type' = 'hive',
    'default-database' = 'default',
    'hive-conf-dir' = '/opt/module/hive/conf'
  );

use catalog hive_catalog;

可以看到此时我们的flink已经连接到hive了,这样就不用总是切换了。


总结

hudi的内容暂时就到这里,学习的过程中觉得hudi的技术还不是很成熟,很多地方的依赖需要自己修改,所以这次就不再进行太深层次的学习了。

相关推荐
想ai抽14 小时前
深入starrocks-多列联合统计一致性探查与策略(YY一下)
java·数据库·数据仓库
starfalling102415 小时前
【hive】一种高效增量表的实现
hive
顧棟17 小时前
【Yarn实战】Yarn 2.9.1滚动升级到3.4.1调研与实践验证
hadoop·yarn
D明明就是我19 小时前
Hive 拉链表
数据仓库·hive·hadoop
嘉禾望岗5031 天前
hive join优化和数据倾斜处理
数据仓库·hive·hadoop
yumgpkpm1 天前
华为鲲鹏 Aarch64 环境下多 Oracle 数据库汇聚操作指南 CMP(类 Cloudera CDP 7.3)
大数据·hive·hadoop·elasticsearch·zookeeper·big data·cloudera
忧郁火龙果1 天前
六、Hive的基本使用
数据仓库·hive·hadoop
忧郁火龙果1 天前
五、安装配置hive
数据仓库·hive·hadoop
chad__chang2 天前
dolphinscheduler安装过程
hive·hadoop
莫叫石榴姐2 天前
字节数开一面
大数据·数据仓库·职场和发展