【综述】Diffusion Models: A Comprehensive Survey of Methods and Applications

Diffusion Models: A Comprehensive Survey of Methods and Applications

论文:https://arxiv.org/abs/2209.00796

github:https://github.com/YangLing0818/Diffusion-Models-Papers-Survey-Taxonomy

目录

[Diffusion Models: A Comprehensive Survey of Methods and Applications](#Diffusion Models: A Comprehensive Survey of Methods and Applications)

[Algorithm Taxonomy](#Algorithm Taxonomy)

[1. Efficient Sampling](#1. Efficient Sampling)

[1.1 Learning-Free Sampling](#1.1 Learning-Free Sampling)

[1.1.1 SDE Solver](#1.1.1 SDE Solver)

[1.1.2 ODE Solver](#1.1.2 ODE Solver)

[1.2 Learning-Based Sampling](#1.2 Learning-Based Sampling)

[1.2.1 Optimized Discretization](#1.2.1 Optimized Discretization)

[1.2.2 Knowledge Distillation](#1.2.2 Knowledge Distillation)

[1.2.3 Truncated Diffusion](#1.2.3 Truncated Diffusion)

[2. Improved Likelihood](#2. Improved Likelihood)

[2.1. Noise Schedule Optimization](#2.1. Noise Schedule Optimization)

[2.2. Reverse Variance Learning](#2.2. Reverse Variance Learning)

[2.3. Exact Likelihood Computation](#2.3. Exact Likelihood Computation)

[3. Data with Special Structures](#3. Data with Special Structures)

[3.1. Data with Manifold Structures](#3.1. Data with Manifold Structures)

[3.1.1 Known Manifolds](#3.1.1 Known Manifolds)

[3.1.2 Learned Manifolds](#3.1.2 Learned Manifolds)

[3.2. Data with Invariant Structures](#3.2. Data with Invariant Structures)

[3.3 Discrete Data](#3.3 Discrete Data)

[Application Taxonomy](#Application Taxonomy)

[1. Computer Vision](#1. Computer Vision)

[2. Natural Language Processing](#2. Natural Language Processing)

[3. Temporal Data Modeling](#3. Temporal Data Modeling)

[4. Multi-Modal Learning](#4. Multi-Modal Learning)

[5. Robust Learning](#5. Robust Learning)

[6. Molecular Graph Modeling](#6. Molecular Graph Modeling)

[7. Material Design](#7. Material Design)

[8. Medical Image Reconstruction](#8. Medical Image Reconstruction)

[Connections with Other Generative Models](#Connections with Other Generative Models)

[1. Variational Autoencoder](#1. Variational Autoencoder)

[2. Generative Adversarial Network](#2. Generative Adversarial Network)

[3. Normalizing Flow](#3. Normalizing Flow)

[4. Autoregressive Models](#4. Autoregressive Models)

[5. Energy-Based Models](#5. Energy-Based Models)


Algorithm Taxonomy

1. Efficient Sampling

1.1 Learning-Free Sampling
1.1.1 SDE Solver

Score-Based Generative Modeling through Stochastic Differential Equations

Adversarial score matching and improved sampling for image generation

Come-closer-diffuse-faster: Accelerating conditional diffusion models for inverse problems through stochastic contraction

Score-Based Generative Modeling with Critically-Damped Langevin Diffusion

Gotta Go Fast When Generating Data with Score-Based Models

Elucidating the Design Space of Diffusion-Based Generative Models

Generative modeling by estimating gradients of the data distribution

1.1.2 ODE Solver

Denoising Diffusion Implicit Models

gDDIM: Generalized denoising diffusion implicit models

Elucidating the Design Space of Diffusion-Based Generative Models

DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Step

Pseudo Numerical Methods for Diffusion Models on Manifolds

Fast Sampling of Diffusion Models with Exponential Integrator

Poisson flow generative models

1.2 Learning-Based Sampling
1.2.1 Optimized Discretization

Learning to Efficiently Sample from Diffusion Probabilistic Models

GENIE: Higher-Order Denoising Diffusion Solvers

Learning fast samplers for diffusion models by differentiating through sample quality

1.2.2 Knowledge Distillation

Progressive Distillation for Fast Sampling of Diffusion Models

Knowledge Distillation in Iterative Generative Models for Improved Sampling Speed

1.2.3 Truncated Diffusion

Accelerating Diffusion Models via Early Stop of the Diffusion Process

Truncated Diffusion Probabilistic Models

2. Improved Likelihood

2.1. Noise Schedule Optimization

Improved denoising diffusion probabilistic models

Variational diffusion models

2.2. Reverse Variance Learning

Analytic-DPM: an Analytic Estimate of the Optimal Reverse Variance in Diffusion Probabilistic Models

Improved denoising diffusion probabilistic models

Stable Target Field for Reduced Variance Score Estimation in Diffusion Models

2.3. Exact Likelihood Computation

Score-Based Generative Modeling through Stochastic Differential Equations

Maximum likelihood training of score-based diffusion models

A variational perspective on diffusion-based generative models and score matching

Score-Based Generative Modeling through Stochastic Differential Equations

Maximum Likelihood Training for Score-based Diffusion ODEs by High Order Denoising Score Matching

Maximum Likelihood Training of Implicit Nonlinear Diffusion Models

3. Data with Special Structures

3.1. Data with Manifold Structures
3.1.1 Known Manifolds

Riemannian Score-Based Generative Modeling

Riemannian Diffusion Models

3.1.2 Learned Manifolds

Score-based generative modeling in latent space

Diffusion priors in variational autoencoders

Hierarchical text-conditional image generation with clip latents

High-resolution image synthesis with latent diffusion models

3.2. Data with Invariant Structures

GeoDiff: A Geometric Diffusion Model for Molecular Conformation Generation

Permutation invariant graph generation via score-based generative modeling

Score-based Generative Modeling of Graphs via the System of Stochastic Differential Equations

DiGress: Discrete Denoising diffusion for graph generation

Learning gradient fields for molecular conformation generation

Graphgdp: Generative diffusion processes for permutation invariant graph generation

SwinGNN: Rethinking Permutation Invariance in Diffusion Models for Graph Generation

3.3 Discrete Data

Vector quantized diffusion model for text-to-image synthesis

Structured Denoising Diffusion Models in Discrete State-Spaces

Vector Quantized Diffusion Model with CodeUnet for Text-to-Sign Pose Sequences Generation

Deep Unsupervised Learning using Non equilibrium Thermodynamics.

A Continuous Time Framework for Discrete Denoising Models

Application Taxonomy

1. Computer Vision

2. Natural Language Processing

3. Temporal Data Modeling

4. Multi-Modal Learning

5. Robust Learning

6. Molecular Graph Modeling

7. Material Design

8. Medical Image Reconstruction

Connections with Other Generative Models

1. Variational Autoencoder

2. Generative Adversarial Network

3. Normalizing Flow

4. Autoregressive Models

5. Energy-Based Models

相关推荐
audyxiao00110 小时前
人工智能顶级期刊PR论文解读|HCRT:基于相关性感知区域的混合网络,用于DCE-MRI图像中的乳腺肿瘤分割
网络·人工智能·智慧医疗·肿瘤分割
零售ERP菜鸟10 小时前
IT价值证明:从“成本中心”到“增长引擎”的确定性度量
大数据·人工智能·职场和发展·创业创新·学习方法·业界资讯
叫我:松哥10 小时前
基于大数据和深度学习的智能空气质量监测与预测平台,采用Spark数据预处理,利用TensorFlow构建LSTM深度学习模型
大数据·python·深度学习·机器学习·spark·flask·lstm
童话名剑11 小时前
目标检测(吴恩达深度学习笔记)
人工智能·目标检测·滑动窗口·目标定位·yolo算法·特征点检测
木卫四科技11 小时前
【木卫四 CES 2026】观察:融合智能体与联邦数据湖的安全数据运营成为趋势
人工智能·安全·汽车
珠海西格电力16 小时前
零碳园区有哪些政策支持?
大数据·数据库·人工智能·物联网·能源
じ☆冷颜〃17 小时前
黎曼几何驱动的算法与系统设计:理论、实践与跨领域应用
笔记·python·深度学习·网络协议·算法·机器学习
启途AI17 小时前
2026免费好用的AIPPT工具榜:智能演示文稿制作新纪元
人工智能·powerpoint·ppt
TH_117 小时前
35、AI自动化技术与职业变革探讨
运维·人工智能·自动化
楚来客17 小时前
AI基础概念之八:Transformer算法通俗解析
人工智能·算法·transformer