leetcode - 780. Reaching Points

Description

Given four integers sx, sy, tx, and ty, return true if it is possible to convert the point (sx, sy) to the point (tx, ty) through some operations, or false otherwise.

The allowed operation on some point (x, y) is to convert it to either (x, x + y) or (x + y, y).

Example 1:

复制代码
Input: sx = 1, sy = 1, tx = 3, ty = 5
Output: true
Explanation:
One series of moves that transforms the starting point to the target is:
(1, 1) -> (1, 2)
(1, 2) -> (3, 2)
(3, 2) -> (3, 5)

Example 2:

复制代码
Input: sx = 1, sy = 1, tx = 2, ty = 2
Output: false

Example 3:

复制代码
Input: sx = 1, sy = 1, tx = 1, ty = 1
Output: true

Constraints:

复制代码
1 <= sx, sy, tx, ty <= 10^9

Solution

Shrink 1by1

The possibilities are like a binary tree, use example 1:

复制代码
			   1,1
			/		\
		1,2			2,1
		/	\		/ \
	1,3		3,2	  2,3 	3,1
	/ \		/ \		/\
  1,4  4,3 3,5 5,2 ...

So instead of searching from the sx, sy, which is the top of the tree, we could start from the leaf, which is the tx, ty

Note that:
t x , t y = { s x , s x + s y s x + s y , s y tx, ty = \begin{cases} sx, sx+sy \\ sx + sy, sy \end{cases} tx,ty={sx,sx+sysx+sy,sy

So every time shrink the smaller one from tx, ty, which means find the parent of the node, until we find the source node.

Time complexity: o ( log ⁡ max ⁡ ( t x , t y ) ) o(\log \max(tx, ty)) o(logmax(tx,ty))

Space complexity: o ( 1 ) o(1) o(1)

Shrink by potential maximum

It's too slow to shrink one node at a time, we could shrink to the number that is larger than sx or sy

Code

Shrink 1by1 (TLE)

python3 复制代码
class Solution:
    def reachingPoints(self, sx: int, sy: int, tx: int, ty: int) -> bool:
        while (tx != sx or ty != sy) and tx >= 1 and ty >= 1:
            if tx > ty:
                tx, ty = tx % ty, ty
            else:
                tx, ty = tx, ty % tx
        return tx == sx and ty == sy

Shrink by potential maximum

python3 复制代码
class Solution:
    def reachingPoints(self, sx: int, sy: int, tx: int, ty: int) -> bool:
        while (tx != sx or ty != sy) and tx >= 1 and ty >= 1:
            if tx > ty:
                multi_factor = max(1, (tx - sx) // ty)
                tx, ty = tx - multi_factor * ty, ty
            else:
                multi_factor = max(1, (ty - sy) // tx)
                tx, ty = tx, ty - tx * multi_factor
        return tx == sx and ty == sy
相关推荐
菜鸟555552 小时前
图论:Floyd算法
算法·图论
呼啦啦啦啦啦啦啦啦7 小时前
常见的排序算法
java·算法·排序算法
胡萝卜3.08 小时前
数据结构初阶:排序算法(一)插入排序、选择排序
数据结构·笔记·学习·算法·排序算法·学习方法
地平线开发者8 小时前
LLM 中 token 简介与 bert 实操解读
算法·自动驾驶
scx201310048 小时前
20250814 最小生成树和重构树总结
c++·算法·最小生成树·重构树
阿巴~阿巴~9 小时前
冒泡排序算法
c语言·开发语言·算法·排序算法
散1129 小时前
01数据结构-交换排序
数据结构·算法
yzx9910139 小时前
Yolov模型的演变
人工智能·算法·yolo
weixin_3077791310 小时前
VS Code配置MinGW64编译SQLite3库
开发语言·数据库·c++·vscode·算法
无聊的小坏坏10 小时前
拓扑排序详解:从力扣 207 题看有向图环检测
算法·leetcode·图论·拓扑学