hive和presto的求数组长度函数区别及注意事项

1、任务

获取邮箱字符串'@'后字符串 ,求长度

2、hive & spark-sql 求数组长度的函数 size

sql 复制代码
hive & spark-sql 求数组长度的函数 size


select size(split(email, '@')),split(email, '@'),split(email, '@')[0],split(email, '@')[1]
FROM 
(select "jack@126.com" as email union select "tom@126.com.cn" as email) tb_mid;

select size(split(email, '@')),split(email, '@'),split(email, '@')[0],split(email, '@')[1]
FROM 
(select 'jack@126.com' as email union select 'tom@126.com.cn' as email) tb_mid;


2	["tom","126.com.cn"]	tom	126.com.cn
2	["jack","126.com"]	jack	126.com
Time taken: 0.723 seconds, Fetched 2 row(s)

3、presto 求数组长度的函数 cardinality

sql 复制代码
presto  求数组长度的函数 cardinality

select cardinality(split(email, '@')),split(email, '@'),split(email, '@')[1],split(email, '@')[2]
FROM 
(select 'jack@126.com' as email union select 'tom@126.com.cn' as email) tb_mid;

_col0 |       _col1       | _col2 |   _col3    
-------+-------------------+-------+------------
     2 | [tom, 126.com.cn] | tom   | 126.com.cn 
     2 | [jack, 126.com]   | jack  | 126.com    
(2 rows)


select cardinality(split(email, '@')),split(email, '@'),split(email, '@')[1],split(email, '@')[2]
FROM 
(select "jack@126.com" as email union select "tom@126.com.cn" as email) tb_mid;


Query 20231019_070945_20009_n9u2s failed: line 3:9: Column 'jack@126.com' cannot be resolved
select cardinality(split(email, '@')),split(email, '@'),split(email, '@')[1],split(email, '@')[2]
FROM
(select "jack@126.com" as email union select "tom@126.com.cn" as email) tb_mid

4、注意事项

1)、在计算数组长度的时候,hive和presto的函数不同

其中hive的size函数默认数组的下标从0开始

presto的cardinality函数默认数组的下标从1开始

2)、presto 不支持双引号 ,而hive 既支持单引号,也支持双引号

sql 复制代码
presto> SELECT 
     -> email,
     -> (case when cardinality(split(email, '@')) = 2 then split(email, '@')[1] else '' end ) as email_suffix
     -> FROM 
     -> (select "jack@126.com" as email union select "tom@126.com.cn" as email) tb_mid;
Query 20231016_070153_17958_p9f2s failed: line 5:9: Column 'jack@126.com' cannot be resolved
SELECT
email,
(case when cardinality(split(email, '@')) = 2 then split(email, '@')[1] else '' end ) as email_suffix
FROM
(select "jack@126.com" as email union select "tom@126.com.cn" as email) tb_mid
相关推荐
十月南城3 小时前
Hive与离线数仓方法论——分层建模、分区与桶的取舍与查询代价
数据仓库·hive·hadoop
鹏说大数据4 小时前
Spark 和 Hive 的关系与区别
大数据·hive·spark
B站计算机毕业设计超人4 小时前
计算机毕业设计Hadoop+Spark+Hive招聘推荐系统 招聘大数据分析 大数据毕业设计(源码+文档+PPT+ 讲解)
大数据·hive·hadoop·python·spark·毕业设计·课程设计
B站计算机毕业设计超人4 小时前
计算机毕业设计hadoop+spark+hive交通拥堵预测 交通流量预测 智慧城市交通大数据 交通客流量分析(源码+LW文档+PPT+讲解视频)
大数据·hive·hadoop·python·spark·毕业设计·课程设计
AI架构师小马4 小时前
Hive调优手册:从入门到精通的完整指南
数据仓库·hive·hadoop·ai
数据架构师的AI之路4 小时前
深入了解大数据领域Hive的HQL语言特性
大数据·hive·hadoop·ai
Gain_chance6 小时前
33-学习笔记尚硅谷数仓搭建-DWS层交易域用户粒度订单表分析及设计代码
数据库·数据仓库·hive·笔记·学习·datagrip
佐伊232 天前
SQL优化剧场:当Hive/MaxCompute遇上数据倾斜的十二种剧情
hive·sql优化·maxcompute·数据倾斜
Amber勇闯数分2 天前
【Hive】基于物品协同过滤 [ ItemCF ] 推荐课程-余弦相似度计算
大数据·数据仓库·hive·hadoop·矩阵
努力有什么不好2 天前
SparkSQL如何查询外部hive数据
数据仓库·hive·hadoop