基于侏儒猫鼬优化的BP神经网络(分类应用) - 附代码

基于侏儒猫鼬优化的BP神经网络(分类应用) - 附代码

文章目录

摘要:本文主要介绍如何用侏儒猫鼬算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1 特征2 特征3 类别
单组iris数据 5.3 2.1 1.2 1

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组) 测试集(组) 总数据(组)
105 45 150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.侏儒猫鼬优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:


图1.神经网络结构

神经网络参数如下:

matlab 复制代码
%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 侏儒猫鼬算法应用

侏儒猫鼬算法原理请参考:https://blog.csdn.net/u011835903/article/details/127455123

侏儒猫鼬算法的参数设置为:

matlab 复制代码
popsize = 10;%种群数量
    Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)

其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从侏儒猫鼬算法的收敛曲线可以看到,整体误差是不断下降的,说明侏儒猫鼬算法起到了优化的作用:

5.Matlab代码

相关推荐
千禧皓月20 分钟前
【Diffusion Model】发展历程
人工智能·深度学习·diffusion model·1024程序员节
猫头虎36 分钟前
大模型训练中的关键技术与挑战:数据采集、微调与资源优化
人工智能·爬虫·数据挖掘·数据分析·网络爬虫·aigc·1024程序员节
yanxing.D1 小时前
penCV轻松入门_面向python(第七章 图像平滑处理)
图像处理·人工智能·opencv·计算机视觉
骥龙2 小时前
1.1、开篇:AI如何重塑网络安全攻防格局?
人工智能·安全·web安全
微学AI2 小时前
国产数据库替代MongoDB的技术实践过程:金仓多模数据库在电子证照系统中的深度应用
数据库·人工智能·1024程序员节
gddkxc2 小时前
AI驱动的客户管理:悟空AI CRM的核心功能与优势
人工智能
sensen_kiss2 小时前
INT301 Bio-computation 生物计算(神经网络)Pt.2 监督学习模型:感知器(Perceptron)
神经网络·学习·机器学习
狂奔solar3 小时前
Apple 开源FastVLM:AI看图说话更快更准
人工智能
星空的资源小屋3 小时前
Antares SQL,一款跨平台开源 SQL 客户端
数据库·人工智能·pdf·开源·电脑·excel·1024程序员节